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ABSTRACT
Let G be a finite abelian group, G ¢ {Zn, Z2® Z2,.}. Then every sequence
A={g1,...,gt}of t = ﬂsﬂ + 1 elements from G contains a subsequence
B C A, |B] = |G| such that Zg,-EB gi = 0 (in G). This bound, which
is best possible, extends recent results of [1] and [22] concerning the cele-
brated theorem of Erdés—Ginzburg-Ziv [21].

1. Introduction

Thirty years ago, Erdos, Ginzburg and Ziv proved the following celebrated the-
orem,

THEOREM A ([21]): Let m > k > 2 be positive integers such that k|m, and
let A = {a1,a9,...,am+k—1} be a sequence of integers. Then there exists I C
{1,2,...,m+k ~1}, |I| = m, such that ) ;.;e; =0 (mod k).

This theorem is the starting point of many new results in the evolving area
called Zero-sum theory. We refer the reader to the references.

Recently efforts have been made to make precise the Erdés—Ginzburg-Ziv the-
orem culminating in the following results of Alon-Bialostocki-Caro and Flores-
Ordaz.

THEOREM B ([1], [22]): Let A = {a1,...,am+k-2} be a sequence of integers that
violates the conclusion of Theorem A. Then there are two elements a,b € Z; (the
cyclic group mod k) such that

(1) ged(a — b, k) =1 (namely a — b is a generator of Zy),
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(2) A= AU A,, |A| = |A2] = -1 (mod k) and
a; € Ay implies a; = a (mod k), while a; € A; implies a; = b (mod k).

THEOREM C ([1], [22]): Let G be an abelian non-cyclic group of order n, njm,
and let A= {g1,...,9n+m—2} be a sequence of n+m —2 elements from G. Then
there exists S C A, |S| =m such that 3 cg9: =0 (in G).

A stronger result proved in [1] is:

THEOREM D ([1]): Let G be a finite abelian non-cyclic group of order n, and let
A={g1,...,9t}, t = 3n/2, be a sequence of elements from G. Then
(1) There exists B C A, |B| = n such that 3 .pg: =0 (in G).
(2) The bound t = 3n/2 is best possible and is realized only by groups of the
form G = Zy & Zop,.

Our main result is the following:

THEOREM 1: Let G be a finite abelian group, G ¢ {Z,,Z2 ® Z2,} and let
A={g1,...,9t}, t = 4/G}/3 + 1, be a sequence of elements from G. Then
(1) There exists B C A, |B| = |G|, such that 3__ g 9i =0 (in G).
(2) The bound t = 4{G|/3+1 is best possible and is realized only by groups of
the form G = Z3 & Z3,.

We assume from now on that H is a finite abelian group. The Davenport’s
constant of G, denoted by D(G), is the smallest integer ¢ such that every sequence
of t members of G contains a subsequence whose members sum to 0 (in G). The
zero-sum constant of G, denoted by ZS(G), is the smallest integer ¢ such that
any sequence of ¢ members of G contains a subsequence of cardinality |G|, that
sum to 0 (in G).

Thus ZS(Z,) = 2n — 1 by Theorem A, while it is easy to see that D(Z,) = n.

2. Preliminary results

The proof of Theorem 1 is quite lengthy and requires some preliminary results,
some of which were already explored in [1]. It becomes clear in the course of the
proof of Theorem 1 that our proof inevitably contains the proof of Theorem D
mentioned in the introduction. Due to the length of the whole proof, it is more
comfortable to split it into several, almost independent sections.

The following theorem of Olson [26] is an important tool.
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THEOREM E (|26]): Let G be an abelian p-group (p prime) of the form G =
Zp°1 @ et @ Zpak . Theﬂ D(G) = 1 + Z?:](pai — 1)

Using Olson’s theorem we can compute the zero-sum constant for abelian
p-groups.

THEOREM 2: Let G be an abelian p-group of the form G = Zpo1 @ -+ @ Zpes .
Then

k
ZS(G) =1+ (> —1) + (,,E.-Zl o _ 1) = |G| + D(G) - 1.
=1

Proof: Let H = G & Z|g), then H is also a p-group and, by Olson’s theorem,
k k
D(H)=1+ Z(p“* -1+ (pEﬁl o 1) = |G|+ D(G) - 1.
i=1

Now let A = {g1,...,9:} be a sequence of t = D(H) elements from G. Consider
the related sequence B = {hy,...,h:}, t = D(H) where h; = (g;,1) € H.
Then by the definition of D(H) there exists a subsequence of B that sums to
0in H. But D(H) = |G] + D(G) — 1 < 2|G|, hence the second coordinate of
the h;’s (1 in Zg|) forces that the number of summands is exactly |G|, thus
Z8(G) < D(H) = |G| + D(G) — 1. On the other hand, let ¢; € G be the vector
(element of G) with k coordinates, whose i-th coordinate is 1 and otherwise is 0.
Consider the following sequence A of members of G:

Take (p™ —1) copies of ¢; for i = 1,...,k, and |G| — 1 copies of the zero-vector
0=(0,0,...,0). Clearly {4| = |G|+ D(G) ~ 2 but A contains no subsequence of
|G| members that sums to 0. Thus ZS(G) = |G|+ D(G)—-1. &

Theorem 2 suggests the following conjecture:

CONJECTURE 0: Let G be a finite abelian group. Then ZS(G) = |G|+ D(G)—1.
It is easy to see that ZS(G) > |G| + D(G) — 1 always holds.

Another useful result is:

THEOREM 3: Let G be an abelian group written as G = A® H, then ZS(G) <
(ZS(A) — 1)|H| + ZS(H).

Proof: This bound allows us to choose ZS(A) blocks, each of |H| elements, in
each of which the sum of the second coordinate (H) is 0 in H. Hence we must
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have (by the definition of ZS{A)) exactly |A| blocks of |H| elements whose sum
in the first coordinate is also 0 in A, hence 0 in G. [ |

An interesting conjecture (see [3]) is:

CONJECTURE 1: Let A = {a1,...,a4n—3} be a sequence of elements in Z, & Z,.
Then there exists I C {1,...,4n~3}, |I| = n such that } ;c;a; = 0 in Z, & Z,.

The bound 4n — 3 is known to hold for 2 < n < 6 (by messy calculations) and
in [3] an upper bound 6n — 7 is proved for all n and 5n — 2 is an upper bound
for n sufficiently large. We shall use only the 4n — 3 bound for 2 < n < 5.

The last tool we need is the Baker-Schmidt theorem [5].

THEOREM F ([5]): Let ¢ be a prime power and let h;(X) = hi(zy,...,z:) €
Z|z1,...,x¢),i=1,...,n be a family of polynomials satisfying:

hi(0)=---=h,(0) =0 (mod q), and also t> (2": deg hi(x)) (g-1).

=1

Then there exists an 0 # a € {0,1}! such that hy(a) = -+ = h,(a) =0 (mod g).

3. Some exact computation of ZS(G)
Our main result in this section is:

THEOREM 4:
(1) ZS(Z2 & Zom) = 6m,
(2) Z8(Z3 @ Z3m) = 12m + 1,
(3) ZS(Z4 & Zym) = 20m + 2,
(4) ZS(Z5 & Z5m) = 30m + 3.

Proof: Since ZS(Z2® Zam) = 6m is proved in [1] and is slightly simpler than the
other cases we shall prove the case ZS(Z3 ® Z3m) = 12m + 1. So let e; = (1,0),
ez = (0,1), e3 = (1,1) be members of Z3 ® Z3n.

Take 3m — 1 copies of e;, 9m — 1 copies of e; and two of e3 to get a sequence
of 12m elements in Z3 @ Z3,, without a zero-sum subsequence of cardinality 9m.
Hence 2S(Z3 ® Z3m) > 12m + 1. In fact the lower bound in all the cases cited in
Theorem 4 follows directly from ZS(G) > |G|+ D(G) — 1.

To show the converse inequality, which is much harder, let

A={g,...,912m+1}
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be a sequence of elements in Z3 & Z3,,.
We need the following facts.

Fact 1: Let ay,...,a9 be 9 elements in Z3 & Z3. There exist three of them
whose sum is 0 in Z3 & Z3.

This is a special case of Conjecture 1 that any sequence of 4n — 3 elements in
Zn ® Z, contains a zero-sum subsequence of cardinality n.

This has been checked for 2 < n < 6 and is easy for n = 3.

Facrt 2: Let ay,...,a7 be 7 elements in Z3 @ Z3. There exist either three or
six of them whose sum in 0 in Z3 & Z3.

This follows from Theorem F [5] in the following way:

Write a; = (b;, ¢;), b;,¢; € Z3. Consider the following polynomial equations.

7
f1(X) =" bizi = 0 (mod 3),

i=1

7
f2(X) =" eixi = 0 (mod 3),

i=1

7
f3(X) ="z, =0 (mod 3).
=1

Since 7 > (Z;Ll degfi(a:)) 3-1)=6and z; =0,7 =1,...,7 is a solution,
then by the Baker-Schmidt theorem there is another solution with z; € (0,1),
i=1,...,7. But fs(z) implies that we have chosen either 3 or 6 members.

Let us return to the proof.

Consider the members of A over Z; @ Z3 first. By the last two observations
and since |A| = 12m + 1 we must have either 4m — 1 triples, say Ay,..., Agm—1,
|A;| = 3, such that each triple sums to 0 in Z3 @ Z3, or 4m — 2 such triples,
say Ai,..., A4m—2, |4;] = 3, and a 6-tuple B such that they sum each to 0 in
Z3® Zs.

We now concentrate on the sums of the second coordinates in the A;’s and B.
For each 1 <i < 4m — 2 write

d; = %{the sum of the second coordinates of the members of A;}

and dy;,m— is this sum for A4, respectively B.
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CasE 1:  Suppose we have 4m — 1 zero-sum triples and consider
D = {dl,dz, ceey d4m_1}.

By the Erdos-Ginzburg-Ziv theorem there exists I C {1,...,4m — 1}, |I| = 3m,
such that » ;. ;d; = 0 (mod m). Hence Zg,-eA,- g; = 0in Z3 & Z3,, forming a
zero-sum subsequence of cardinality I - |4;| = 9m as needed.

CASE 2: Suppose we have 4m—2 zero-sum triples and the 6-tuples B., Consider
D = {di,...,d4m-2} and dgm_1. By Theorem B we may repeat the argument
of case 1 unless there exist a,b € Z,, gcd(a — b,m) = 1 and either (w.l.o.g.)
di=--=dyn_1=0a(inZn);dgm = =dgm—2=>b(in Zp)ord; =--- =
dom-1=a (in Z,) and dopm = -+ - = dgm-2 = b (in Z,,).

Suppose dym—1 = j (mod m). We have to find 3m — 2 of the d;’s whose sum
with dgm-1 = 0 {mod m). So we have either

(I) 5+ bz + (3m — 2 —z)a = 0 (mod m), 0<z<m-1, or

() j+bz+(3m—2-z)a=0(modm), m-1<z<2m-1

But this implies z(b—a) = 2a — j (in Z,,) and because gcd(a—b,m)=1,b—a
is a unit in Z,,, so z = (2a —j)(b—a)~! € Z,, is a solution. Hence in case (I) just
take T = (2a—7)(b—a)! and in case (I) take zg = z+m € [m—~1,...,2m—1].
Hence ZS(Z3 & Z3n) = 12m + 1.

The proof of the two other cases is exactly the same. |

Theorem 4 suggest the following conjecture:

CONJECTURE 2:
ZS(Zp ® Zym) =n(n+1)m+n—2.

The only obstacles are that we depend in the former proof on the 4n — 3 bound
for the Z, ® Z,, conjecture and that the Baker-Schmidt holds only for prime
power. Anyway, this conjecture holds true for n = 2%,3%,5“ because in these
cases the Baker—Schmidt theorem applies and the 4n—3 bound for Z, & Z,, is true
by a multiplicative argument presented in [3]. It is also known that Conjecture 0
implies Conjecture 2 in view of a theorem of Olson [26] concerning D(Z, & Znm ).

An important remark, after Theorem 4, that will be useful later is:

Remark: Suppose G = Z3® Z3, ® H, where |H| = m and ged(n, m) > 1. Then
ZS(G)<12nm< Wl 41w
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Indeed we may repeat the proof of Theorem 4, step by step, ensuring 4nm — 2
triples, Ay,..., A4gnm—2, |Ai] = 3, such that each triple sums to 0 in Z3 & Z;.
Defining the d;’s as before, and since we are left with Z,, @ H which is not cyclic
as ged(n,m) > 1, and also |Z, @ H| = nm, we can apply (after Theorem C),
Case 1 in the proof of Theorem 4 to ensure I C {1,...,4nm — 2}, |I| = 3nm,
Ziel d; =0in Z, ® H. Hence

Z g,-=0 in Z3® Z3, ® H.

9;€A;
iel
4. The presence of abelian non-cyclic p-subgroups, p > 5

Our main goal in this section is to show that the presence of an abelian non-cyclic
p-subgroup, p > 5, implies the inequality ZS(G) < 5139[ + 1. This goal is achieved
through a sequence of computational propositions.

PROPOSITION 1: Let G = @f=1 Zye: © H where e; > t;. Then

7Z8(G) < ( <Elp >_k+1)|a|—1

phi ottt

Proof: Set G = A® H, then by Theorem 3, ZS(G) < (2S(A) — 1)|H| + ZS(H).
Rearranging and using ZS(H) < 2|H|—1 we obtain ZS(G) < (ZS(A)+1)|H| -
Set S = @f___l Zpe: and apply Theorem 2 to get

(ZS(A)+ 1)|H| -1 = (|A|+ D(A))|H| -1 <1+%|1—)) |G —1.

Applying monotonicity we are done. |

PROPOSITION 2:
(1) Suppose G = Zpe @ Z,s ® H for some p > 7, o, > 1. Then ZS(G) <
821G < 48l 41,
(2) Suppose G = Zs« & Zse © H, o, 8 > 2. Then ZS(G) < 1|G| < 48l 41,
(3) Suppose G = Zs @ Zsm ® H, m > 2. Then ZS(G) < 4'?' + 1.

(4) Suppose G = Zs ® Zs ® H. Then ZS(G) < 48l 11,

Proof: Cases (1) and (2) follow directly from Proposition 1.
Case (3) follows from Theorem 4 if H is trivial, and otherwise from Theorem
4 and Proposition 1 since m > 2.
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Case (4) follows from the observation that if H contains Zps, p # 5, then
G = 75 ® Zsp= ® H' and this case is solved in (3). Otherwise

GC=2s®75®Z5« D H'

and we are done by Proposition 1. |
The next theorem summarizes the content of Section 4.

THEOREM 5: Suppose G contains an abelian non-cyclic p-group for some p > 5.
Then Z5(G) < 48l 4 1.

Proof: It follows from Propositions 1 and 2 and Theorem 4. |

5. The presence of abelian non-cyclic p-subgroups, p = 2,3
We now consider the presence of an abelian non-cyclic p-subgroup where p = 2, 3.

PROPOSITION 3:
(1) Suppose G = Zza ® Z3s & Z3v ® H, o, 8,7 > 1. Then ZS(G) < H|G| <
4Gl 4 1.
(2) Suppose G = Z3« ® Z3s & H, 3 > a > 2. Then ZS(G) < §|G| < ﬂagl +1

Proof: Both cases follow directly from Proposition 1. ]

Now we are left with the case G = Z3 & Z3« ® H, where H contains no 3-
subgroup. If H is cyclic, say H = Z,, then G = Z3 & Z3p, m = 3*~1n and we
proved in Theorem 4 that ZS(Z3 ® Z3,,) = ﬂgl + 1. If H is not cyclic we can
write H = Z, ® H’, hence G = Z3 & Z3m ® H', m = 3°1n and, by the remark
after Theorem 4, ZS(G) < ﬂag-l + 1, hence we have proved:

THEOREM 6: Suppose G contains an abelian non-cyclic 3-subgroup. Then

78(G) < 3':,?' +1;

equality holds iff G = Z3 @ Z3,,.

PROPOSITION 4:
(1) Suppose G = Zaa ® Z2s © Zav ® Zos ® H, 0,8,7,6 > 1. Then ZS(G) <
g < el 4,
(2) Suppose G = Zga ® Zos ® 20 ®H, a > 1, B, > 2. Then Z8(G) < $|G| <
44 41,
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(3) Suppose G = Z, ® Zy ® Zy« ® H where H is non-cyclic. Then ZS(G) <
el 1.

(4) Suppose G = Zzea ® Z2p ® H, B> o > 3. Then ZS(G) < 2G| < 44l 4 1.

Proof: Cases (1), (2) and (4) follow directly from Proposition 1. For case (3)
we infer that since H is not cyclic, H must contain either a 2-subgroup and
we are done by Proposition 4 (1}, or a non-cyclic 3-subgroup and we are done
by Theorem 6, or a non-cyclic p-subgroup for some p > 5 and we are done by
Theorem 5.

PROPOSITION 5: Suppose G = Z4® Zya ® H, a > 2. Then ZS(G) < ﬂgg[ +1.

Proof: If H is cyclic of odd order then G = Z4 & Z4,, n = |H|- 2%~ and, again
by Theorem 4, ZS(G) < i|3£l +1.

If H contains a 2-subgroup, then we are done by Proposition 4 (2) since then
ZS(G) < $3|G|. Lastly, if H is non-cyclic then it contains a non-cyclic p-subgroup.
If p = 2 we are done by Proposition 4. If p = 3 we are done by Theorem 6, and
if p > 5 we are done by Theorem 5. 1

So there remain to consider only the following three cases:

(1) G=2Z,9Z, 0 H.

(2) G=2:97Z2® Z2« ® H, H is cyclic.

(3)G=2Z0Z,®H.

However, all these cases reduced to either Z; @ Z,,,, which is solved in Theorem
4,0r to Zo @ Zy ® Zo & H, where H is cyclic of odd order.

Indeed if G = Z2® Z2® H and H is cyclic of order n, then either G = Z2® Zs,
ifnisodd or G = Z, ® Z2 & Zy« ® H' where H' 1s cyclic of odd order. If H is
not cyclic, then H contains an abelian non-cyclic p-subgroup and we are done by
Proposition 4, Theorem 5, and Theorem 6.

If G=2Zy® Zy® H and H is cyclic of order n, then either G = Zy & Zs,,,
m=2nifnisodd, or G = Zy ® Z4 ® Zo- & H' where H is cyclic of odd order
and in fact @ = 1 by Proposition 4. If H is not cyclic, then as before we are
done by either Proposition 4, Theorem 5 or Theorem 6. So we are left with
G=27Z,8®2,® Zy« @ H where H is cyclic of odd order, by Proposition 4.

Qur last result which completes the proof of Theorem 1 is:

PROPOSITION 6: Suppose G = Zy ® Za ® Zan, then ZS(G) < ﬁgl +1.
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Proof: We shall modify the proof of Theorem 4, to show first that # +3is
an upper bound.

Let A = {a1,...,a10n+3} be a sequence of elements in G. Consider first the
elements over Zo & Z; & Zy = H. Every 9 elements of H contains two equal
elements whose sum is 0. Also, by a routine application of the Baker-Schmidt
theorem every 5 members contains either 2 of 4 elements whose sum is 0 in H.
Hence in 10n + 3 members we have either 5n — 1 pairs, Ay,. .., Asn-1, |4i| = 2,
whose sum is 0 in H, or 5n — 2 such pairs and a quadruple B, |B| = 4 whose sum
is 0 in H, and we can apply the technique of the proof of Theorem 4 to obtain
the desired result, namely that ZS(G) < £|4£l +3.

Observe now that £|4£l +3 < éJ_éCﬂ + 1 holds for |G| > 24, hence for n > 3.
Since ZS(Z2 ® Zo @ Z2) = 11 < 42 + 1 and ZS(Z, © Z, ® Zy) = 21 < &€ + 1,
we are left only with G = Z; & Zy @ Zg, for which we have to show ZS(G) < 32.
Here is the ad-hoc computation. Let A = {a,..., a3z} be a sequence of elements
in G=2y0 Zy® Zy® Z3. By the arguments above one of the following cases
occurs.

CASE 1: There are 14 (5n — 1) pairs whose sum is 0 in Z; & Z5 & Z3 and we
can apply the techniques of Theorem 4.

CaAsE 2: There are 13 (5n — 2) pairs whose sum is 0 in Zo @ Z; & Z3 and a
quadruple whose sum is 0 in Z; @ Z, & Z3 and again we can apply the techniques
of Theorem 4.

Cast 3: There are 12 (5n — 3) pairs whose sum is 0 and we are left with 8
elements, no two of them equal over Z; & Z2 @ Z, (otherwise we are in case 1 or
2). However, in this case the 8 elements form the whole group Z> ® Z, ® Z> and
we can write them as follows:

9= (0’ 0,0, bl)a g2 = (07 0, lst), g3 = (0’ 1,0,b3)» ga = (1,0, 0, b4),
gs = (0’ 1, 11b5)’ ge = (1’0’ 1’b6)7 g1 = (1) 1,0, b7), gs = (1, 1, l,bS),

where b; is the Z3-component. By Theorem A we can choose 9 of the 12 pairs so
that their sum is 0 in Zo ® Z9 ® Z, @ Z5. This forms a subsequence of 18 elements
whose sum is 0 in G. We are left with three pairs A;, Ag, A3, |4:| =2,i=1,2,3
whose sum is 0 in Zy @ Z3 & Z; {each) and denote by Ci, C,, C; respectively
their sum in the fourth coordinate (the Z3-coordinate).
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If C; = Co = Cs3 or C] # Cy # C3 # C; then we may add A;, Az, Az to the
former 18 elements to get 24 elements whose sum is 0 in G. Hence without loss
of generality C; # Cy = C3. Now observe that {g1,g2,...,9s} contains many
subsequences of 4 elements whose sum is 0 in Z2 @ Z3 @ Z5 and if there exists two
such quadruples, say B, Bg, with distinct sum (mod 3) in the last coordinate,
then there must exist 1 < ¢ < 3,4 < j < 2 such that A; U B; is a 6-tuple with
zero-sum in G which we can add to the former 18 elements and we are done. So

consider: By = {94,93,97,91}, B2 = {94,92,96,91}, B3 = {94,98,95,91}. These
are quadruples whose sum is 0 in Zs ® Z5 & Z; and hence their sum in the Z3-
coordinate must be equal. But this sum is by + b3+ by + by = by + by + bg + by =
by + bg + bs + by = j (mod 3). Hence summing over all of them we get:

3b4+3b1+b2+b3+b4+b5+b6+b750(m0d3)
hence
by+b3+by+bs+bs+b; =0 (mod 3),

but also it is easy to check now that:
g2tgstgatgs+get+gr=0in Z2B 220220 23

and again we can add these elements to the former 18 elements to obtain 24
members of A whose sum is 0 in Zy & Zy @ Zg.

This completes the proof of Proposition 6 and the main theorem of this paper.
|
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