ZERO-SUM SUBSEQUENCES IN ABELIAN NON-CYCLIC GROUPS

ΒY

YAIR CARO

School of Education, Department of Mathematics University of Haifa—Oranim, Tivon 36910, Israel

ABSTRACT

Let G be a finite abelian group, $G \notin \{Z_n, Z_2 \oplus Z_{2n}\}$. Then every sequence $A = \{g_1, \ldots, g_t\}$ of $t = \frac{4|G|}{3} + 1$ elements from G contains a subsequence $B \subset A$, |B| = |G| such that $\sum_{g_i \in B} g_i = 0$ (in G). This bound, which is best possible, extends recent results of [1] and [22] concerning the celebrated theorem of Erdös-Ginzburg-Ziv [21].

1. Introduction

Thirty years ago, Erdös, Ginzburg and Ziv proved the following celebrated theorem.

THEOREM A ([21]): Let $m \ge k \ge 2$ be positive integers such that k|m, and let $A = \{a_1, a_2, \ldots, a_{m+k-1}\}$ be a sequence of integers. Then there exists $I \subset \{1, 2, \ldots, m+k-1\}, |I| = m$, such that $\sum_{i \in I} a_i \equiv 0 \pmod{k}$.

This theorem is the starting point of many new results in the evolving area called Zero-sum theory. We refer the reader to the references.

Recently efforts have been made to make precise the Erdös-Ginzburg-Ziv theorem culminating in the following results of Alon-Bialostocki-Caro and Flores-Ordaz.

THEOREM B ([1], [22]): Let $A = \{a_1, \ldots, a_{m+k-2}\}$ be a sequence of integers that violates the conclusion of Theorem A. Then there are two elements $a, b \in Z_k$ (the cyclic group mod k) such that

(1) gcd(a-b,k) = 1 (namely a-b is a generator of Z_k),

Received January 4, 1994 and in revised form July 7, 1994

Y. CARO

(2) $A = A_1 \cup A_2$, $|A_1| \equiv |A_2| \equiv -1 \pmod{k}$ and $a_i \in A_1$ implies $a_i \equiv a \pmod{k}$, while $a_i \in A_2$ implies $a_i \equiv b \pmod{k}$.

THEOREM C ([1], [22]): Let G be an abelian non-cyclic group of order n, n|m, and let $A = \{g_1, \ldots, g_{n+m-2}\}$ be a sequence of n+m-2 elements from G. Then there exists $S \subset A$, |S| = m such that $\sum_{q_i \in S} g_i = 0$ (in G).

A stronger result proved in [1] is:

THEOREM D ([1]): Let G be a finite abelian non-cyclic group of order n, and let $A = \{g_1, \ldots, g_t\}, t = 3n/2$, be a sequence of elements from G. Then

- (1) There exists $B \subset A$, |B| = n such that $\sum_{g_i \in B} g_i = 0$ (in G).
- (2) The bound t = 3n/2 is best possible and is realized only by groups of the form G = Z₂ ⊕ Z_{2m}.

Our main result is the following:

THEOREM 1: Let G be a finite abelian group, $G \notin \{Z_n, Z_2 \oplus Z_{2n}\}$ and let $A = \{g_1, \ldots, g_t\}, t = 4|G|/3 + 1$, be a sequence of elements from G. Then

- (1) There exists $B \subset A$, |B| = |G|, such that $\sum_{q_i \in B} g_i = 0$ (in G).
- (2) The bound t = 4|G|/3 + 1 is best possible and is realized only by groups of the form G = Z₃ ⊕ Z_{3n}.

We assume from now on that H is a finite abelian group. The Davenport's constant of G, denoted by D(G), is the smallest integer t such that every sequence of t members of G contains a subsequence whose members sum to 0 (in G). The zero-sum constant of G, denoted by ZS(G), is the smallest integer t such that any sequence of t members of G contains a subsequence of cardinality |G|, that sum to 0 (in G).

Thus $ZS(Z_n) = 2n - 1$ by Theorem A, while it is easy to see that $D(Z_n) = n$.

2. Preliminary results

The proof of Theorem 1 is quite lengthy and requires some preliminary results, some of which were already explored in [1]. It becomes clear in the course of the proof of Theorem 1 that our proof inevitably contains the proof of Theorem D mentioned in the introduction. Due to the length of the whole proof, it is more comfortable to split it into several, almost independent sections.

The following theorem of Olson [26] is an important tool.

222

THEOREM E ([26]): Let G be an abelian p-group (p prime) of the form $G = Z_{p^{\alpha_1}} \oplus \cdots \oplus Z_{p^{\alpha_k}}$. Then $D(G) = 1 + \sum_{i=1}^k (p^{\alpha_i} - 1)$.

Using Olson's theorem we can compute the zero-sum constant for abelian p-groups.

THEOREM 2: Let G be an abelian p-group of the form $G = Z_{p^{\alpha_1}} \oplus \cdots \oplus Z_{p^{\alpha_k}}$. Then

$$ZS(G) = 1 + \sum_{i=1}^{k} (p^{\alpha_i} - 1) + (p^{\sum_{i=1}^{k} \alpha_i} - 1) = |G| + D(G) - 1.$$

Proof: Let $H = G \oplus Z_{|G|}$, then H is also a p-group and, by Olson's theorem,

$$D(H) = 1 + \sum_{i=1}^{k} (p^{\alpha_i} - 1) + \left(p^{\sum_{i=1}^{k} \alpha_i} - 1 \right) = |G| + D(G) - 1.$$

Now let $A = \{g_1, \ldots, g_t\}$ be a sequence of t = D(H) elements from G. Consider the related sequence $B = \{h_1, \ldots, h_t\}$, t = D(H) where $h_i = (g_i, 1) \in H$. Then by the definition of D(H) there exists a subsequence of B that sums to 0 in H. But D(H) = |G| + D(G) - 1 < 2|G|, hence the second coordinate of the h_i 's (1 in $Z_{|G|}$) forces that the number of summands is exactly |G|, thus $ZS(G) \leq D(H) = |G| + D(G) - 1$. On the other hand, let $e_i \in G$ be the vector (element of G) with k coordinates, whose *i*-th coordinate is 1 and otherwise is 0. Consider the following sequence A of members of G:

Take $(p^{\alpha_i} - 1)$ copies of e_i for i = 1, ..., k, and |G| - 1 copies of the zero-vector $\mathbf{0} = (0, 0, ..., 0)$. Clearly |A| = |G| + D(G) - 2 but A contains no subsequence of |G| members that sums to 0. Thus ZS(G) = |G| + D(G) - 1.

Theorem 2 suggests the following conjecture:

CONJECTURE 0: Let G be a finite abelian group. Then ZS(G) = |G| + D(G) - 1. It is easy to see that $ZS(G) \ge |G| + D(G) - 1$ always holds.

Another useful result is:

THEOREM 3: Let G be an abelian group written as $G = A \oplus H$, then $ZS(G) \le (ZS(A) - 1)|H| + ZS(H)$.

Proof: This bound allows us to choose ZS(A) blocks, each of |H| elements, in each of which the sum of the second coordinate (H) is 0 in H. Hence we must

Y. CARO

have (by the definition of ZS(A)) exactly |A| blocks of |H| elements whose sum in the first coordinate is also 0 in A, hence 0 in G.

An interesting conjecture (see [3]) is:

CONJECTURE 1: Let $A = \{a_1, \ldots, a_{4n-3}\}$ be a sequence of elements in $Z_n \oplus Z_n$. Then there exists $I \subset \{1, \ldots, 4n-3\}, |I| = n$ such that $\sum_{i \in I} a_i = 0$ in $Z_n \oplus Z_n$.

The bound 4n - 3 is known to hold for $2 \le n \le 6$ (by messy calculations) and in [3] an upper bound 6n - 7 is proved for all n and 5n - 2 is an upper bound for n sufficiently large. We shall use only the 4n - 3 bound for $2 \le n \le 5$.

The last tool we need is the Baker–Schmidt theorem [5].

THEOREM F ([5]): Let q be a prime power and let $h_i(X) = h_i(x_1, \ldots, x_t) \in Z[x_1, \ldots, x_t]$, $i = 1, \ldots, n$ be a family of polynomials satisfying:

$$h_1(0) \equiv \cdots \equiv h_n(0) \equiv 0 \pmod{q}$$
, and also $t > \left(\sum_{i=1}^n \deg h_i(x)\right) (q-1)$.

Then there exists an $0 \neq \alpha \in \{0, 1\}^t$ such that $h_1(\alpha) \equiv \cdots \equiv h_n(\alpha) \equiv 0 \pmod{q}$.

3. Some exact computation of ZS(G)

Our main result in this section is:

THEOREM 4:

- (1) $\operatorname{ZS}(Z_2 \oplus Z_{2m}) = 6m$,
- (2) $ZS(Z_3 \oplus Z_{3m}) = 12m + 1$,
- (3) $ZS(Z_4 \oplus Z_{4m}) = 20m + 2$,
- (4) $ZS(Z_5 \oplus Z_{5m}) = 30m + 3.$

Proof: Since $ZS(Z_2 \oplus Z_{2m}) = 6m$ is proved in [1] and is slightly simpler than the other cases we shall prove the case $ZS(Z_3 \oplus Z_{3m}) = 12m + 1$. So let $e_1 = (1,0)$, $e_2 = (0,1), e_3 = (1,1)$ be members of $Z_3 \oplus Z_{3m}$.

Take 3m - 1 copies of e_1 , 9m - 1 copies of e_2 and two of e_3 to get a sequence of 12m elements in $Z_3 \oplus Z_{3m}$ without a zero-sum subsequence of cardinality 9m. Hence $ZS(Z_3 \oplus Z_{3m}) \ge 12m + 1$. In fact the lower bound in all the cases cited in Theorem 4 follows directly from $ZS(G) \ge |G| + D(G) - 1$.

To show the converse inequality, which is much harder, let

$$A = \{g_1, \dots, g_{12m+1}\}$$

Vol. 92, 1995

be a sequence of elements in $Z_3 \oplus Z_{3m}$.

We need the following facts.

FACT 1: Let a_1, \ldots, a_9 be 9 elements in $Z_3 \oplus Z_3$. There exist three of them whose sum is 0 in $Z_3 \oplus Z_3$.

This is a special case of Conjecture 1 that any sequence of 4n - 3 elements in $Z_n \oplus Z_n$ contains a zero-sum subsequence of cardinality n.

This has been checked for $2 \le n \le 6$ and is easy for n = 3.

FACT 2: Let a_1, \ldots, a_7 be 7 elements in $Z_3 \oplus Z_3$. There exist either three or six of them whose sum in 0 in $Z_3 \oplus Z_3$.

This follows from Theorem F [5] in the following way:

Write $a_i = (b_i, c_i), b_i, c_i \in Z_3$. Consider the following polynomial equations.

$$f_1(X) = \sum_{i=1}^7 b_i x_i \equiv 0 \pmod{3},$$

$$f_2(X) = \sum_{i=1}^7 c_i x_i \equiv 0 \pmod{3},$$

$$f_3(X) = \sum_{i=1}^7 x_i \equiv 0 \pmod{3}.$$

Since $7 > \left(\sum_{i=1}^{3} \deg f_i(x)\right)(3-1) = 6$ and $x_i \equiv 0, i = 1, ..., 7$ is a solution, then by the Baker-Schmidt theorem there is another solution with $x_i \in (0, 1)$, i = 1, ..., 7. But $f_3(x)$ implies that we have chosen either 3 or 6 members.

Let us return to the proof.

Consider the members of A over $Z_3 \oplus Z_3$ first. By the last two observations and since |A| = 12m + 1 we must have either 4m - 1 triples, say A_1, \ldots, A_{4m-1} , $|A_i| = 3$, such that each triple sums to 0 in $Z_3 \oplus Z_3$, or 4m - 2 such triples, say A_1, \ldots, A_{4m-2} , $|A_i| = 3$, and a 6-tuple B such that they sum each to 0 in $Z_3 \oplus Z_3$.

We now concentrate on the sums of the second coordinates in the A_i 's and B. For each $1 \le i \le 4m - 2$ write

$$d_i = \frac{1}{3} \{ \text{the sum of the second coordinates of the members of } A_i \}$$

and d_{4m-1} is this sum for A_{4m-1} respectively B.

CASE 1: Suppose we have 4m - 1 zero-sum triples and consider

$$D = \{d_1, d_2, \ldots, d_{4m-1}\}.$$

By the Erdös-Ginzburg-Ziv theorem there exists $I \subset \{1, \ldots, 4m-1\}, |I| = 3m$, such that $\sum_{i \in I} d_i \equiv 0 \pmod{m}$. Hence $\sum_{g_j \in A_i} g_j = 0$ in $Z_3 \oplus Z_{3m}$ forming a zero-sum subsequence of cardinality $I \cdot |A_i| = 9m$ as needed.

CASE 2: Suppose we have 4m-2 zero-sum triples and the 6-tuples B., Consider $D = \{d_1, \ldots, d_{4m-2}\}$ and d_{4m-1} . By Theorem B we may repeat the argument of case 1 unless there exist $a, b \in Z_m \operatorname{gcd}(a-b,m) = 1$ and either (w.l.o.g.) $d_1 = \cdots = d_{3m-1} = a \pmod{Z_m}; d_{3m} = \cdots = d_{4m-2} = b \pmod{Z_m}$ or $d_1 = \cdots = d_{2m-1} = a \pmod{Z_m}$ and $d_{2m} = \cdots = d_{4m-2} = b \pmod{Z_m}$.

Suppose $d_{4m-1} \equiv j \pmod{m}$. We have to find 3m-2 of the d_i 's whose sum with $d_{4m-1} \equiv 0 \pmod{m}$. So we have either

(I) $j + bx + (3m - 2 - x)a \equiv 0 \pmod{m}$, $0 \le x \le m - 1$, or

(II) $j + bx + (3m - 2 - x)a \equiv 0 \pmod{m}$, $m - 1 \le x \le 2m - 1$.

But this implies x(b-a) = 2a - j (in Z_m) and because gcd(a-b,m) = 1, b-ais a unit in Z_m so $x = (2a - j)(b-a)^{-1} \in Z_m$ is a solution. Hence in case (I) just take $x = (2a - j)(b-a)^{-1}$ and in case (II) take $x_0 = x + m \in [m-1, \ldots, 2m-1]$. Hence $ZS(Z_3 \oplus Z_{3m}) = 12m + 1$.

The proof of the two other cases is exactly the same.

Theorem 4 suggest the following conjecture:

CONJECTURE 2:

$$\operatorname{ZS}(Z_n \oplus Z_{nm}) = n(n+1)m + n - 2.$$

The only obstacles are that we depend in the former proof on the 4n-3 bound for the $Z_n \oplus Z_n$ conjecture and that the Baker-Schmidt holds only for prime power. Anyway, this conjecture holds true for $n = 2^{\alpha}, 3^{\alpha}, 5^{\alpha}$ because in these cases the Baker-Schmidt theorem applies and the 4n-3 bound for $Z_n \oplus Z_n$ is true by a multiplicative argument presented in [3]. It is also known that Conjecture 0 implies Conjecture 2 in view of a theorem of Olson [26] concerning $D(Z_n \oplus Z_{nm})$.

An important remark, after Theorem 4, that will be useful later is:

Remark: Suppose $G = Z_3 \oplus Z_{3n} \oplus H$, where |H| = m and gcd(n,m) > 1. Then $ZS(G) \le 12nm < \frac{4|G|}{3} + 1$.

Indeed we may repeat the proof of Theorem 4, step by step, ensuring 4nm-2 triples, A_1, \ldots, A_{4nm-2} , $|A_i| = 3$, such that each triple sums to 0 in $Z_3 \oplus Z_3$. Defining the d_i 's as before, and since we are left with $Z_n \oplus H$ which is not cyclic as gcd(n,m) > 1, and also $|Z_n \oplus H| = nm$, we can apply (after Theorem C), Case 1 in the proof of Theorem 4 to ensure $I \subset \{1, \ldots, 4nm-2\}, |I| = 3nm$, $\sum_{i \in I} d_i = 0$ in $Z_n \oplus H$. Hence

$$\sum_{\substack{g_j \in A_i \\ i \in I}} g_j = 0 \quad \text{in } Z_3 \oplus Z_{3n} \oplus H.$$

4. The presence of abelian non-cyclic *p*-subgroups, $p \ge 5$

Our main goal in this section is to show that the presence of an abelian non-cyclic *p*-subgroup, $p \ge 5$, implies the inequality $ZS(G) < \frac{4|G|}{3} + 1$. This goal is achieved through a sequence of computational propositions.

PROPOSITION 1: Let $G = \bigoplus_{i=1}^{k} Z_{p^{e_i}} \oplus H$ where $e_i \ge t_i$. Then

$$\operatorname{ZS}(G) \leq \left(1 + \frac{\left(\sum_{i=1}^{k} p^{t_i}\right) - k + 1}{p^{t_1 + t_2 + \dots + t_k}}\right) |G| - 1.$$

Proof: Set $G = A \oplus H$, then by Theorem 3, $ZS(G) \le (ZS(A) - 1)|H| + ZS(H)$. Rearranging and using $ZS(H) \le 2|H| - 1$ we obtain $ZS(G) \le (ZS(A) + 1)|H| - 1$. Set $S = \bigoplus_{i=1}^{k} Z_{p^{e_i}}$ and apply Theorem 2 to get

$$(ZS(A) + 1)|H| - 1 = (|A| + D(A))|H| - 1 = \left(1 + \frac{D(A)}{|A|}\right)|G| - 1.$$

Applying monotonicity we are done.

PROPOSITION 2:

- (1) Suppose $G = Z_{p^{\alpha}} \oplus Z_{p^{\beta}} \oplus H$ for some $p \ge 7$, $\alpha, \beta \ge 1$. Then $ZS(G) < \frac{62}{46}|G| < \frac{4|G|}{3} + 1$.
- (2) Suppose $G = Z_{5^{\alpha}} \oplus Z_{5^{\beta}} \oplus H$, $\alpha, \beta \geq 2$. Then $ZS(G) < \frac{134}{125}|G| < \frac{4|G|}{3} + 1$.
- (3) Suppose $G = Z_5 \oplus Z_{5m} \oplus H$, $m \ge 2$. Then $\operatorname{ZS}(G) < \frac{4|G|}{3} + 1$.
- (4) Suppose $G = Z_5 \oplus Z_5 \oplus H$. Then $ZS(G) < \frac{4|G|}{3} + 1$.

Proof: Cases (1) and (2) follow directly from Proposition 1.

Case (3) follows from Theorem 4 if H is trivial, and otherwise from Theorem 4 and Proposition 1 since $m \ge 2$.

Y. CARO

Isr. J. Math.

Case (4) follows from the observation that if H contains $Z_{p^{\alpha}}$, $p \neq 5$, then $G = Z_5 \oplus Z_{5p^{\alpha}} \oplus H'$ and this case is solved in (3). Otherwise

$$G = Z_5 \oplus Z_5 \oplus Z_{5^{\alpha}} \oplus H'$$

and we are done by Proposition 1.

The next theorem summarizes the content of Section 4.

THEOREM 5: Suppose G contains an abelian non-cyclic p-group for some $p \ge 5$. Then $ZS(G) < \frac{4|G|}{3} + 1$.

Proof: It follows from Propositions 1 and 2 and Theorem 4.

5. The presence of abelian non-cyclic *p*-subgroups, p = 2, 3

We now consider the presence of an abelian non-cyclic *p*-subgroup where p = 2, 3.

PROPOSITION 3:

- (1) Suppose $G = Z_{3^{\alpha}} \oplus Z_{3^{\beta}} \oplus Z_{3^{\gamma}} \oplus H$, $\alpha, \beta, \gamma \ge 1$. Then $ZS(G) < \frac{34}{27}|G| < \frac{4|G|}{3} + 1$.
- (2) Suppose $G = Z_{3^{\alpha}} \oplus Z_{3^{\beta}} \oplus H$, $\beta \ge \alpha \ge 2$. Then $ZS(G) < \frac{98}{81}|G| < \frac{4|G|}{3} + 1$.

Proof: Both cases follow directly from Proposition 1.

Now we are left with the case $G = Z_3 \oplus Z_{3^{\alpha}} \oplus H$, where H contains no 3subgroup. If H is cyclic, say $H = Z_n$, then $G = Z_3 \oplus Z_{3m}$, $m = 3^{\alpha-1}n$, and we proved in Theorem 4 that $ZS(Z_3 \oplus Z_{3m}) = \frac{4|G|}{3} + 1$. If H is not cyclic we can write $H = Z_n \oplus H'$, hence $G = Z_3 \oplus Z_{3m} \oplus H'$, $m = 3^{\alpha-1}n$ and, by the remark after Theorem 4, $ZS(G) < \frac{4|G|}{3} + 1$, hence we have proved:

THEOREM 6: Suppose G contains an abelian non-cyclic 3-subgroup. Then

$$\operatorname{ZS}(G) \le \frac{4|G|}{3} + 1;$$

equality holds iff $G = Z_3 \oplus Z_{3n}$.

PROPOSITION 4:

- (1) Suppose $G = Z_{2^{\alpha}} \oplus Z_{2^{\beta}} \oplus Z_{2^{\gamma}} \oplus Z_{2^{\delta}} \oplus H$, $\alpha, \beta, \gamma, \delta \ge 1$. Then $ZS(G) < \frac{21}{16}|G| < \frac{4|G|}{3} + 1$.
- (2) Suppose $G = Z_{2^{\alpha}} \oplus Z_{2^{\beta}} \oplus Z_{2^{\gamma}} \oplus H$, $\alpha \ge 1$, $\beta, \gamma \ge 2$. Then $ZS(G) < \frac{40}{32}|G| < \frac{4|G|}{2} + 1$.

- (3) Suppose $G = Z_2 \oplus Z_2 \oplus Z_2 \oplus H$ where H is non-cyclic. Then $ZS(G) < \frac{4|G|}{2} + 1$.
- (4) Suppose $G = Z_{2^{\alpha}} \oplus Z_{2^{\beta}} \oplus H$, $\beta \ge \alpha \ge 3$. Then $ZS(G) < \frac{79}{64}|G| < \frac{4|G|}{3} + 1$.

Proof: Cases (1), (2) and (4) follow directly from Proposition 1. For case (3) we infer that since H is not cyclic, H must contain either a 2-subgroup and we are done by Proposition 4 (1), or a non-cyclic 3-subgroup and we are done by Theorem 6, or a non-cyclic *p*-subgroup for some $p \ge 5$ and we are done by Theorem 5.

PROPOSITION 5: Suppose $G = Z_4 \oplus Z_{2^{\alpha}} \oplus H$, $\alpha \ge 2$. Then $ZS(G) < \frac{4|G|}{3} + 1$.

Proof: If H is cyclic of odd order then $G = Z_4 \oplus Z_{4n}$, $n = |H| \cdot 2^{\alpha-2}$ and, again by Theorem 4, $ZS(G) < \frac{4|G|}{3} + 1$.

If *H* contains a 2-subgroup, then we are done by Proposition 4 (2) since then $ZS(G) < \frac{40}{32}|G|$. Lastly, if *H* is non-cyclic then it contains a non-cyclic *p*-subgroup. If p = 2 we are done by Proposition 4. If p = 3 we are done by Theorem 6, and if $p \ge 5$ we are done by Theorem 5.

So there remain to consider only the following three cases:

- (1) $G = Z_2 \oplus Z_2 \oplus H$.
- (2) $G = Z_2 \oplus Z_2 \oplus Z_{2^{\alpha}} \oplus H$, H is cyclic.
- (3) $G = Z_2 \oplus Z_4 \oplus H$.

However, all these cases reduced to either $Z_2 \oplus Z_{2n}$, which is solved in Theorem 4, or to $Z_2 \oplus Z_2 \oplus Z_2 \oplus H$, where H is cyclic of odd order.

Indeed if $G = Z_2 \oplus Z_2 \oplus H$ and H is cyclic of order n, then either $G = Z_2 \oplus Z_{2n}$ if n is odd or $G = Z_2 \oplus Z_2 \oplus Z_{2\alpha} \oplus H'$ where H' is cyclic of odd order. If H is not cyclic, then H contains an abelian non-cyclic p-subgroup and we are done by Proposition 4, Theorem 5, and Theorem 6.

If $G = Z_2 \oplus Z_4 \oplus H$ and H is cyclic of order n, then either $G = Z_2 \oplus Z_{2m}$, m = 2n if n is odd, or $G = Z_2 \oplus Z_4 \oplus Z_{2^{\alpha}} \oplus H'$ where H is cyclic of odd order and in fact $\alpha = 1$ by Proposition 4. If H is not cyclic, then as before we are done by either Proposition 4, Theorem 5 or Theorem 6. So we are left with $G = Z_2 \oplus Z_2 \oplus Z_{2^{\alpha}} \oplus H$ where H is cyclic of odd order, by Proposition 4.

Our last result which completes the proof of Theorem 1 is:

PROPOSITION 6: Suppose $G = Z_2 \oplus Z_2 \oplus Z_{2n}$, then $ZS(G) < \frac{4|G|}{3} + 1$.

Proof: We shall modify the proof of Theorem 4, to show first that $\frac{5|G|}{4} + 3$ is an upper bound.

Let $A = \{a_1, \ldots, a_{10n+3}\}$ be a sequence of elements in G. Consider first the elements over $Z_2 \oplus Z_2 \oplus Z_2 \oplus Z_2 = H$. Every 9 elements of H contains two equal elements whose sum is 0. Also, by a routine application of the Baker-Schmidt theorem every 5 members contains either 2 of 4 elements whose sum is 0 in H. Hence in 10n + 3 members we have either 5n - 1 pairs, $A_1, \ldots, A_{5n-1}, |A_i| = 2$, whose sum is 0 in H, or 5n - 2 such pairs and a quadruple B, |B| = 4 whose sum is 0 in H, and we can apply the technique of the proof of Theorem 4 to obtain the desired result, namely that $ZS(G) \leq \frac{5|G|}{4} + 3$.

Observe now that $\frac{5[G]}{4} + 3 < \frac{4[G]}{3} + 1$ holds for |G| > 24, hence for n > 3. Since $ZS(Z_2 \oplus Z_2 \oplus Z_2) = 11 < \frac{4 \cdot 8}{3} + 1$ and $ZS(Z_2 \oplus Z_2 \oplus Z_4) = 21 < \frac{4 \cdot 16}{3} + 1$, we are left only with $G = Z_2 \oplus Z_2 \oplus Z_6$, for which we have to show $ZS(G) \leq 32$. Here is the ad-hoc computation. Let $A = \{a_1, \ldots, a_{32}\}$ be a sequence of elements in $G = Z_2 \oplus Z_2 \oplus Z_2 \oplus Z_3$. By the arguments above one of the following cases occurs.

CASE 1: There are 14 (5n - 1) pairs whose sum is 0 in $Z_2 \oplus Z_2 \oplus Z_2$ and we can apply the techniques of Theorem 4.

CASE 2: There are 13 (5n-2) pairs whose sum is 0 in $Z_2 \oplus Z_2 \oplus Z_2$ and a quadruple whose sum is 0 in $Z_2 \oplus Z_2 \oplus Z_2$ and again we can apply the techniques of Theorem 4.

CASE 3: There are 12 (5n - 3) pairs whose sum is 0 and we are left with 8 elements, no two of them equal over $Z_2 \oplus Z_2 \oplus Z_2$ (otherwise we are in case 1 or 2). However, in this case the 8 elements form the whole group $Z_2 \oplus Z_2 \oplus Z_2$ and we can write them as follows:

$$\begin{array}{ll} g_1 = (0,0,0,b_1), & g_2 = (0,0,1,b_2), & g_3 = (0,1,0,b_3), & g_4 = (1,0,0,b_4), \\ g_5 = (0,1,1,b_5), & g_6 = (1,0,1,b_6), & g_7 = (1,1,0,b_7), & g_8 = (1,1,1,b_8), \end{array}$$

where b_i is the Z_3 -component. By Theorem A we can choose 9 of the 12 pairs so that their sum is 0 in $Z_2 \oplus Z_2 \oplus Z_2 \oplus Z_3$. This forms a subsequence of 18 elements whose sum is 0 in G. We are left with three pairs $A_1, A_2, A_3, |A_i| = 2, i = 1, 2, 3$ whose sum is 0 in $Z_2 \oplus Z_2 \oplus Z_2$ (each) and denote by C_1, C_2, C_3 respectively their sum in the fourth coordinate (the Z_3 -coordinate). Vol. 92, 1995

If $C_1 = C_2 = C_3$ or $C_1 \neq C_2 \neq C_3 \neq C_1$ then we may add A_1, A_2, A_3 to the former 18 elements to get 24 elements whose sum is 0 in G. Hence without loss of generality $C_1 \neq C_2 = C_3$. Now observe that $\{g_1, g_2, \ldots, g_8\}$ contains many subsequences of 4 elements whose sum is 0 in $Z_2 \oplus Z_2 \oplus Z_2$ and if there exists two such quadruples, say B_1, B_2 , with distinct sum (mod 3) in the last coordinate, then there must exist $1 \leq i \leq 3$, $i \leq j \leq 2$ such that $A_i \cup B_j$ is a 6-tuple with zero-sum in G which we can add to the former 18 elements and we are done. So consider: $B_1 = \{g_4, g_3, g_7, g_1\}, B_2 = \{g_4, g_2, g_6, g_1\}, B_3 = \{g_4, g_8, g_5, g_1\}$. These are quadruples whose sum is 0 in $Z_2 \oplus Z_2 \oplus Z_2$ and hence their sum in the Z_3 coordinate must be equal. But this sum is $b_4 + b_3 + b_7 + b_1 \equiv b_4 + b_2 + b_6 + b_1 \equiv$ $b_4 + b_8 + b_5 + b_1 \equiv j \pmod{3}$. Hence summing over all of them we get:

$$3b_4 + 3b_1 + b_2 + b_3 + b_4 + b_5 + b_6 + b_7 \equiv 0 \pmod{3}$$

hence

$$b_2 + b_3 + b_4 + b_5 + b_6 + b_7 \equiv 0 \pmod{3},$$

but also it is easy to check now that:

$$g_2 + g_3 + g_4 + g_5 + g_6 + g_7 = 0$$
 in $Z_2 \oplus Z_2 \oplus Z_2 \oplus Z_3$

and again we can add these elements to the former 18 elements to obtain 24 members of A whose sum is 0 in $Z_2 \oplus Z_2 \oplus Z_6$.

This completes the proof of Proposition 6 and the main theorem of this paper.

ACKNOWLEDGEMENT: I am indebted to Professor Dani Berend for his help in preparing this paper, and for the referee for many useful comments.

References

- [1] N. Alon, A. Bialostocki and Y. Caro, Extremal zero-sum problems, manuscript.
- [2] N. Alon and Y. Caro, On three zero-sum Ramsey-type problems, Journal of Graph Theory 17 (1993), 177-192.
- [3] N. Alon and M. Dubiner, Zero-sum sets of prescribed size, Combinatorics, Paul Erdös is eighty (Vol. 1), Keszthely (Hungary), 1993, pp. 33-50.

- [4] N. Alon, D. Kleitman, R. Lipton, R. Meshulam, M. Rabin and J. Spencer, Set systems with no union of cardinality 0 (mod m), Graphs and Combinatorics 7 (1991), 97-99.
- [5] R.C. Baker and W. Schmidt, Diophantine problems in variables restricted to the values 0 and 1, Journal of Number Theory 12 (1980), 460-486.
- [6] A. Białostocki, Y. Caro and Y. Roditty, On zero-sum Turan numbers, Ars Combinatoria 29A (1990), 117-127.
- [7] A. Bialostocki and P. Dierker, On the Erdös-Ginzburg-Ziv theorem and the Ramsey numbers for stars and matchings, Discrete Mathematics 110 (1992), 1-8.
- [8] A. Bialostocki and P. Dierker, Zero-sum Ramsey theorems, Congressus Numerantium 70 (1990), 119–130.
- [9] A. Bialostocki and P. Dierker, Zero-sum Ramsey numbers small graphs, Ars Combinatoria 29A (1990), 193-198.
- [10] A. Bialostocki and P. Dierker, On zero-sum Ramsey numbers multiple copies of a graph, manuscript submitted.
- [11] Y. Caro, On zero-sum Ramsey numbers stars, Discrete Mathematics 104 (1992), 1-6.
- [12] Y. Caro, On q-divisible hypergraphs, Ars Combinatoria 33 (1992), 321-328.
- [13] Y. Caro, On several variations of the Turan and Ramsey numbers, Journal of Graph Theory 16 (1992), 257-266.
- [14] Y. Caro, On zero-sum Turan numbers stars and cycles, Ars Combinatoria 33 (1992), 193-198.
- [15] Y. Caro, On zero-sum delta systems and multiple copies of hypergraphs, Journal of Graph Theory 15 (1991), 511-521.
- [16] Y. Caro, On Zero-sum Ramsey numbers complete graphs, Quarterly Journal of Mathematics, Oxford 43 (1992), 175-181.
- [17] Y. Caro, Zero-sum problems A survey, Discrete Mathematics, to appear.
- [18] Y. Caro, A complete characterization of the Zero-Sum (mod 2) Ramsey Numbers, Journal of Combinatorial Theory, Series A, to appear.
- [19] Y. Caro and Y. Roditty, On zero-sum Turan numbers problems of Bialostocki and Dierker, Journal of the Australian Mathematical Society, Series A 53 (1992), 402-407.
- [20] F.R.K. Chung and R.L. Graham, Edge-colored complete graphs with precisely colored subgraphs, Combinatorica 3 (1983), 315-324.

- [21] P. Erdös, A. Ginzburg and A. Ziv, Theorem in additive number theory, Bulletin of the Research Council of Israel **10F** (1961), 41-43.
- [22] C. Flores and O. Ordaz, On sequences with zero-sum in abelian groups, submitted.
- [23] Z. Füredi and D.J. Kleitman, On zero-trees, Journal of Graph Theory 16 (1992), 107-120.
- [24] Y.O. Hamidounre, On the subset product in finite groups, Europe Journal of Combinatorics 12 (1991), 211-221.
- [25] R. Meshulam, An uncertainty inequality and zero subsums, Discrete Mathematics 84 (1990), 197-200.
- [26] J.E. Olson, A combinatorial problem on finite abelian groups (I, II), Journal of Number Theory 1 (1969), 8-10, 195-199.
- [27] Y. Roditty, On zero-sum Ramsey-numbers of multiple copies of a graph, Ars Combinatoria, to appear
- [28] L. Schrijver and P.D. Seymour, A simpler proof of the zero-trees theorem, Journal of Combinatorial Theory, Series A 58 (1991), 301-305.
- [29] L. Schrijver and P.D. Seymour, Spanning trees of different weights, in Polyhedral Combinatorics, DIMACS series in Discrete Mathematics and Theoretical Computational Science, Vol. 1, AMS-ACM, 1990, pp. 281–288.
- [30] A. Geroldinger, On Davenport's constant, Journal of Combinatorial Theory, Series A, in press.