ZERO-SUM SUBSEQUENCES IN ABELIAN NON-CYCLIC GROUPS

BY

YAIR CARO

School of Education, Department of Mathematics University of Haifa--Oranim, Tivon 36910, Israel

ABSTRACT

Let G be a finite abelian group, $G \notin \{Z_n, Z_2 \oplus Z_{2n}\}.$ Then every sequence $A = \{g_1, \ldots, g_t\}$ of $t = \frac{4|G|}{3} + 1$ elements from G contains a subsequence $B \subset A$, $|B| = |G|$ such that $\sum_{g_i \in B} g_i = 0$ (in G). This bound, which is best possible, extends recent results of [1] and [22] concerning the celebrated theorem of Erdös-Ginzburg-Ziv [21].

I. Introduction

Thirty years ago, Erdös, Ginzburg and Ziv proved the following celebrated theorem.

THEOREM A ([21]): Let $m \ge k \ge 2$ be positive integers such that $k|m$, and let $A = \{a_1, a_2, \ldots, a_{m+k-1}\}$ be a sequence of integers. Then there exists $I \subset$ $\{1,2,\ldots,m+k-1\}, |I| = m$, such that $\sum_{i \in I} a_i \equiv 0 \pmod{k}.$

This theorem is the starting point of many new results in the evolving area called Zero-sum theory. We refer the reader to the references.

Recently efforts have been made to make precise the Erdbs-Ginzburg-Ziv theorem culminating in the following results of Alon-Bialostocki-Caro and Flores-Ordaz.

THEOREM B ([1], [22]): Let $A = \{a_1, \ldots, a_{m+k-2}\}$ be a sequence of integers that *violates the conclusion of Theorem A. Then there are two elements* $a, b \in Z_k$ (the *cyclic group rood k) such that*

(1) $gcd(a - b, k) = 1$ *(namely a - b is a generator of Z_k)*,

Received January 4, 1994 and in revised form July 7, 1994

(2) $A = A_1 \cup A_2$, $|A_1| \equiv |A_2| \equiv -1 \pmod{k}$ and $a_i \in A_1$ implies $a_i \equiv a \pmod{k}$, while $a_i \in A_2$ implies $a_i \equiv b \pmod{k}$.

THEOREM C ([1], [22]): Let G be an abelian non-cyclic group of order n, $n|m$, and let $A = \{g_1, \ldots, g_{n+m-2}\}\)$ be a sequence of $n+m-2$ elements from *G*. Then *there exists* $S \subset A$, $|S| = m$ *such that* $\sum_{a_i \in S} g_i = 0$ *(in G).*

A stronger result proved in [1] is:

THEOREM D $([1])$: Let G be a finite abelian non-cyclic group of order n, and let $A = \{g_1, \ldots, g_t\}, t = 3n/2$, be a sequence of elements from G. Then

- (1) There exists $B \subset A$, $|B| = n$ such that $\sum_{g_i \in B} g_i = 0$ (in G).
- (2) The bound $t = 3n/2$ is best possible and is realized only by groups of the *form* $G = Z_2 \oplus Z_{2m}$.

Our main result is the following:

THEOREM 1: Let G be a finite abelian group, $G \notin \{Z_n, Z_2 \oplus Z_{2n}\}\$ and let $A = \{g_1, \ldots, g_t\}, t = 4|G|/3 + 1$, be a sequence of elements from G. Then

- (1) There exists $B \subset A$, $|B| = |G|$, such that $\sum_{a \in B} g_i = 0$ (in G).
- (2) The bound $t = 4|G|/3 + 1$ is best possible and is realized only by groups of the form $G = Z_3 \oplus Z_{3n}$.

We assume from now on that H is a finite abelian group. The Davenport's constant of G , denoted by $D(G)$, is the smallest integer t such that every sequence of t members of G contains a subsequence whose members sum to 0 (in G). The zero-sum constant of G, denoted by $\operatorname{ZS}(G)$, is the smallest integer t such that any sequence of t members of G contains a subsequence of cardinality $|G|$, that sum to 0 (in G).

Thus $\text{ZS}(Z_n) = 2n - 1$ by Theorem A, while it is easy to see that $D(Z_n) = n$.

2. Preliminary **results**

The proof of Theorem 1 is quite lengthy and requires some preliminary results, some of which were already explored in [1]. It becomes clear in the course of the proof of Theorem 1 that our proof inevitably contains the proof of Theorem D mentioned in the introduction. Due to the length of the whole proof, it is more comfortable to split it into several, almost independent sections.

The following theorem of Olson [26] is an important tool.

THEOREM E ([26]): Let G be an abelian p-group (p prime) of the form $G =$ $Z_{p^{\alpha_1}} \oplus \cdots \oplus Z_{p^{\alpha_k}}$. Then $D(G) = 1 + \sum_{i=1}^k (p^{\alpha_i} - 1)$.

Using Olson's theorem we can compute the zero-sum constant for abelian p-groups.

THEOREM 2: Let G be an abelian p-group of the form $G = Z_{p^{\alpha_1}} \oplus \cdots \oplus Z_{p^{\alpha_k}}$. *Then*

$$
ZS(G) = 1 + \sum_{i=1}^{k} (p^{\alpha_i} - 1) + (p^{\sum_{i=1}^{k} \alpha_i} - 1) = |G| + D(G) - 1.
$$

Proof: Let $H = G \oplus Z_{|G|}$, then H is also a p-group and, by Olson's theorem,

$$
D(H) = 1 + \sum_{i=1}^{k} (p^{\alpha_i} - 1) + (p^{\sum_{i=1}^{k} \alpha_i} - 1) = |G| + D(G) - 1.
$$

Now let $A = \{g_1, \ldots, g_t\}$ be a sequence of $t = D(H)$ elements from G. Consider the related sequence $B = \{h_1, \ldots, h_t\}, t = D(H)$ where $h_i = (g_i, 1) \in H$. Then by the definition of $D(H)$ there exists a subsequence of B that sums to 0 in H. But $D(H) = |G| + D(G) - 1 < 2|G|$, hence the second coordinate of the h_i 's (1 in $Z_{|G|}$) forces that the number of summands is exactly $|G|$, thus $\text{ZS}(G) \leq D(H) = |G| + D(G) - 1$. On the other hand, let $e_i \in G$ be the vector (element of G) with k coordinates, whose *i*-th coordinate is 1 and otherwise is 0. Consider the following sequence A of members of G :

Take $(p^{\alpha_i}-1)$ copies of e_i for $i=1,\ldots,k$, and $|G|-1$ copies of the zero-vector $0 = (0, 0, \ldots, 0)$. Clearly $|A| = |G| + D(G) - 2$ but A contains no subsequence of $|G|$ members that sums to 0. Thus $\text{zs}(G) = |G| + D(G) - 1$.

Theorem 2 suggests the following conjecture:

CONJECTURE 0: Let G be a finite abelian group. Then $\text{ZS}(G) = |G| + D(G) - 1$. *It is easy to see that* $ZS(G) \geq |G| + D(G) - 1$ *always holds.*

Another useful result is:

THEOREM 3: Let G be an abelian group written as $G = A \oplus H$, then $\text{ZS}(G)$ < $(ZS(A) - 1)|H| + ZS(H).$

Proof: This bound allows us to choose $\text{zs}(A)$ blocks, each of |H| elements, in each of which the sum of the second coordinate (H) is 0 in H. Hence we must

have (by the definition of $\mathbb{Z}S(A)$) exactly |A| blocks of |H| elements whose sum in the first coordinate is also 0 in A , hence 0 in G .

An interesting conjecture (see $[3]$) is:

CONJECTURE 1: Let $A = \{a_1, \ldots, a_{4n-3}\}$ be a sequence of elements in $Z_n \oplus Z_n$. *Then there exists* $I \subset \{1, ..., 4n-3\}$, $|I| = n$ such that $\sum_{i \in I} a_i = 0$ in $Z_n \oplus Z_n$.

The bound $4n-3$ is known to hold for $2 \leq n \leq 6$ (by messy calculations) and in [3] an upper bound $6n - 7$ is proved for all n and $5n - 2$ is an upper bound for *n* sufficiently large. We shall use only the $4n-3$ bound for $2 \le n \le 5$.

The last tool we need is the Baker-Schmidt theorem [5].

THEOREM F ([5]): Let q be a prime power and let $h_i(X) = h_i(x_1, \ldots, x_t) \in$ $Z[x_1, \ldots, x_t], i = 1, \ldots, n$ be a family of polynomials satisfying:

$$
h_1(0) \equiv \cdots \equiv h_n(0) \equiv 0 \pmod{q}, \text{ and also } t > \left(\sum_{i=1}^n \deg h_i(x)\right)(q-1).
$$

Then there exists an $0 \neq \alpha \in \{0,1\}^t$ *such that* $h_1(\alpha) \equiv \cdots \equiv h_n(\alpha) \equiv 0 \pmod{q}$.

3. Some exact computation of $2S(G)$

Our main result in this section is:

THEOREM **4:**

- (1) $\text{ZS}(Z_2 \oplus Z_{2m}) = 6m$,
- (2) $\text{ZS}(Z_3 \oplus Z_{3m}) = 12m + 1,$
- (3) $\text{ZS}(Z_4 \oplus Z_{4m}) = 20m + 2$,
- (4) $\text{ZS}(Z_5 \oplus Z_{5m}) = 30m + 3.$

Proof: Since $\text{ZS}(Z_2 \oplus Z_{2m}) = 6m$ is proved in [1] and is slightly simpler than the other cases we shall prove the case $\text{ZS}(Z_3 \oplus Z_{3m}) = 12m + 1$. So let $e_1 = (1, 0)$, $e_2 = (0, 1), e_3 = (1, 1)$ be members of $Z_3 \oplus Z_{3m}$.

Take $3m - 1$ copies of e_1 , $9m - 1$ copies of e_2 and two of e_3 to get a sequence of $12m$ elements in $Z_3 \oplus Z_{3m}$ without a zero-sum subsequence of cardinality 9m. Hence $2S(Z_3 \oplus Z_{3m}) \ge 12m + 1$. In fact the lower bound in all the cases cited in Theorem 4 follows directly from $\text{zs}(G) \geq |G| + D(G) - 1$.

To show the converse inequality, which is much harder, let

$$
A=\{g_1,\ldots,g_{12m+1}\}
$$

be a sequence of elements in $Z_3 \oplus Z_{3m}$.

We need the following facts.

FACT 1: Let a_1, \ldots, a_9 be 9 elements in $Z_3 \oplus Z_3$. There exist three of them whose sum is 0 in $Z_3 \oplus Z_3$.

This is a special case of Conjecture 1 that any sequence of $4n - 3$ elements in $Z_n \oplus Z_n$ contains a zero-sum subsequence of cardinality n.

This has been checked for $2 \le n \le 6$ and is easy for $n = 3$.

FACT 2: Let a_1, \ldots, a_7 be 7 elements in $Z_3 \oplus Z_3$. There exist either three or six of them whose sum in 0 in $Z_3 \oplus Z_3$.

This follows from Theorem F [5] in the following way:

Write $a_i = (b_i, c_i), b_i, c_i \in Z_3$. Consider the following polynomial equations.

$$
f_1(X) = \sum_{i=1}^{7} b_i x_i \equiv 0 \pmod{3},
$$

$$
f_2(X) = \sum_{i=1}^{7} c_i x_i \equiv 0 \pmod{3},
$$

$$
f_3(X) = \sum_{i=1}^{7} x_i \equiv 0 \pmod{3}.
$$

Since $7 > (\sum_{i=1}^{3} \deg f_i(x)) (3-1) = 6$ and $x_i \equiv 0, i = 1, ..., 7$ is a solution, then by the Baker-Schmidt theorem there is another solution with $x_i \in (0,1)$, $i = 1, \ldots, 7$. But $f_3(x)$ implies that we have chosen either 3 or 6 members.

Let us return to the proof.

Consider the members of A over $Z_3 \oplus Z_3$ first. By the last two observations and since $|A| = 12m + 1$ we must have either $4m - 1$ triples, say A_1, \ldots, A_{4m-1} , $|A_i| = 3$, such that each triple sums to 0 in $Z_3 \oplus Z_3$, or $4m - 2$ such triples, say A_1, \ldots, A_{4m-2} , $|A_i| = 3$, and a 6-tuple B such that they sum each to 0 in $Z_3 \oplus Z_3$.

We now concentrate on the sums of the second coordinates in the A_i 's and B . For each $1 \leq i \leq 4m-2$ write

$$
d_i = \frac{1}{3}
$$
{the sum of the second coordinates of the members of A_i }

and d_{4m-1} is this sum for A_{4m-1} respectively B.

CASE 1: Suppose we have $4m - 1$ zero-sum triples and consider

$$
D = \{d_1, d_2, \ldots, d_{4m-1}\}.
$$

By the Erdös-Ginzburg-Ziv theorem there exists $I \subset \{1,\ldots, 4m-1\}, |I| = 3m$, such that $\sum_{i\in I} d_i \equiv 0 \pmod{m}$. Hence $\sum_{g_i \in A_i} g_j = 0$ in $Z_3 \oplus Z_{3m}$ forming a zero-sum subsequence of cardinality $I \cdot |A_i| = 9m$ as needed.

CASE 2: Suppose we have $4m-2$ zero-sum triples and the 6-tuples B ., Consider $D = \{d_1, \ldots, d_{4m-2}\}\$ and d_{4m-1} . By Theorem B we may repeat the argument of case 1 unless there exist $a, b \in Z_m$ gcd $(a - b, m) = 1$ and either (w.l.o.g.) $d_1 = \cdots = d_{3m-1} = a$ (in Z_m); $d_{3m} = \cdots = d_{4m-2} = b$ (in Z_m) or $d_1 = \cdots = d_m$ $d_{2m-1} = a \text{ (in } Z_m) \text{ and } d_{2m} = \cdots = d_{4m-2} = b \text{ (in } Z_m).$

Suppose $d_{4m-1} \equiv j \pmod{m}$. We have to find $3m-2$ of the d_i 's whose sum with $d_{4m-1} \equiv 0 \pmod{m}$. So we have either

(I) $j + bx + (3m - 2 - x)a \equiv 0 \pmod{m}$, $0 \le x \le m - 1$, or

(II) $j+bx+(3m-2-x)a\equiv 0 \pmod{m}$, $m-1 \leq x \leq 2m-1$.

But this implies $x(b-a) = 2a - j$ (in Z_m) and because $gcd(a-b, m) = 1, b-a$ is a unit in Z_m so $x = (2a-j)(b-a)^{-1} \in Z_m$ is a solution. Hence in case (I) just take $x = (2a-j)(b-a)^{-1}$ and in case (II) take $x_0 = x + m \in [m-1, \ldots, 2m-1]$. Hence $\text{ZS}(Z_3 \oplus Z_{3m}) = 12m + 1$.

The proof of the two other cases is exactly the same. \Box

Theorem 4 suggest the following conjecture:

CONJECTURE 2:

$$
ZS(Z_n \oplus Z_{nm}) = n(n+1)m + n - 2.
$$

The only obstacles are that we depend in the former proof on the $4n-3$ bound for the $Z_n \oplus Z_n$ conjecture and that the Baker-Schmidt holds only for prime power. Anyway, this conjecture holds true for $n = 2^{\alpha}, 3^{\alpha}, 5^{\alpha}$ because in these cases the Baker-Schmidt theorem applies and the $4n-3$ bound for $Z_n \oplus Z_n$ is true by a multiplicative argument presented in [3]. It is also known that Conjecture 0 implies Conjecture 2 in view of a theorem of Olson [26] concerning $D(Z_n \oplus Z_{nm})$.

An important remark, after Theorem 4, that will be useful later is:

Remark: Suppose $G = Z_3 \oplus Z_{3n} \oplus H$, where $|H| = m$ and $gcd(n, m) > 1$. Then $\text{ZS}(G) \leq 12nm < \frac{4|G|}{3} + 1.$

Indeed we may repeat the proof of Theorem 4, step by step, ensuring $4nm - 2$ triples, A_1, \ldots, A_{4nm-2} , $|A_i| = 3$, such that each triple sums to 0 in $Z_3 \oplus Z_3$. Defining the d_i 's as before, and since we are left with $Z_n \oplus H$ which is not cyclic as $gcd(n, m) > 1$, and also $|Z_n \oplus H| = nm$, we can apply (after Theorem C), Case 1 in the proof of Theorem 4 to ensure $I \subset \{1, \ldots, 4nm - 2\}, |I| = 3nm$, $\sum_{i \in I} d_i = 0$ in $Z_n \oplus H$. Hence

$$
\sum_{\substack{g_j \in A_i \\ i \in I}} g_j = 0 \quad \text{in } Z_3 \oplus Z_{3n} \oplus H.
$$

4. The presence of abelian non-cyclic p-subgroups, $p \geq 5$

Our main goal in this section is to show that the presence of an abelian non-cyclic p-subgroup, $p \geq 5$, implies the inequality $\text{ZS}(G) < \frac{4|G|}{3} + 1$. This goal is achieved through a sequence of computational propositions.

PROPOSITION 1: Let $G = \bigoplus_{i=1}^k Z_{p^{\epsilon_i}} \oplus H$ where $e_i \geq t_i$. Then

$$
ZS(G) \leq \left(1 + \frac{\left(\sum_{i=1}^{k} p^{t_i}\right) - k + 1}{p^{t_1 + t_2 + \dots + t_k}}\right)|G| - 1.
$$

Proof. Set $G = A \oplus H$, then by Theorem 3, $\text{ZS}(G) \leq (\text{ZS}(A) - 1)|H| + \text{ZS}(H)$. Rearranging and using $\text{ZS}(H) \leq 2|H| - 1$ we obtain $\text{ZS}(G) \leq (\text{ZS}(A) + 1)|H| - 1$. Set $S = \bigoplus_{i=1}^k Z_{p^e_i}$ and apply Theorem 2 to get

$$
(2S(A) + 1)|H| - 1 = (|A| + D(A))|H| - 1 = \left(1 + \frac{D(A)}{|A|}\right)|G| - 1.
$$

Applying monotonicity we are done. \Box

PROPOSITION 2:

- (1) Suppose $G = Z_{p^{\alpha}} \oplus Z_{p^{\beta}} \oplus H$ for some $p \geq 7$, $\alpha, \beta \geq 1$. Then $\text{ZS}(G)$ < $\frac{62}{40}$ |G| < $\frac{4|G|}{3}$ + 1.
- (2) Suppose $G = Z_{5^{\alpha}} \oplus Z_{5^{\beta}} \oplus H$, $\alpha, \beta \geq 2$. Then $\text{ZS}(G) < \frac{134}{125}|G| < \frac{4|G|}{3} + 1$.
- (3) *Suppose G = Z₅* \oplus *Z₅m* \oplus *H, m* \geq *2. Then* $\text{ZS}(G) < \frac{4|G|}{3} + 1$ *.*
- (4) *Suppose G = Z₅* \oplus *Z₅* \oplus *H*. Then $\text{ZS}(G) < \frac{4|G|}{3} + 1$.

Proof: Cases (1) and (2) follow directly from Proposition 1.

Case (3) follows from Theorem 4 if H is trivial, and otherwise from Theorem 4 and Proposition 1 since $m \geq 2$.

228 Service St. CARO Isr. J. Math.

Case (4) follows from the observation that if H contains $Z_{p^{\alpha}}$, $p \neq 5$, then $G = Z_5 \oplus Z_{5p^{\alpha}} \oplus H'$ and this case is solved in (3). Otherwise

$$
G=Z_5\oplus Z_5\oplus Z_{5^{\alpha}}\oplus H'
$$

and we are done by Proposition 1.

The next theorem summarizes the content of Section 4.

THEOREM 5: *Suppose G contains an abelian non-cyclic p-group for some* $p \geq 5$ *.* Then $\text{ZS}(G) < \frac{4|G|}{3} + 1$.

Proof: It follows from Propositions 1 and 2 and Theorem 4. \blacksquare

5. The presence of abelian non-cyclic p-subgroups, $p = 2, 3$

We now consider the presence of an abelian non-cyclic p-subgroup where $p = 2, 3$.

PROPOSITION 3:

- (1) *Suppose G = Z₃^{* α *}* \oplus *Z₃^{* β *}* \oplus *Z₃^{* \uparrow *}* \oplus *<i>H*, α , β , $\gamma \geq 1$. Then ZS(*G*) < $\frac{34}{27}|G|$ < $\frac{4|G|}{2}+1$.
- (2) *Suppose G = Z₃^a* \oplus Z₃ β \oplus H, $\beta \ge \alpha \ge 2$. Then $\operatorname{ZS}(G) < \frac{98}{81}|G| < \frac{4|G|}{3} + 1$.

Proof: Both cases follow directly from Proposition 1.

Now we are left with the case $G = Z_3 \oplus Z_{3^{\alpha}} \oplus H$, where H contains no 3subgroup. If H is cyclic, say $H = Z_n$, then $G = Z_3 \oplus Z_{3m}$, $m = 3^{\alpha-1}n$, and we proved in Theorem 4 that $\text{ZS}(Z_3 \oplus Z_{3m}) = \frac{4|G|}{3} + 1$. If H is not cyclic we can write $H = Z_n \oplus H'$, hence $G = Z_3 \oplus Z_{3m} \oplus H'$, $m = 3^{\alpha-1}n$ and, by the remark after Theorem 4, $\text{ZS}(G) < \frac{4|G|}{3} + 1$, hence we have proved:

THEOREM 6: *Suppose G contains an abelian non-cyclic 3-subgroup. Then*

$$
\operatorname{ZS}(G) \leq \frac{4|G|}{3} + 1;
$$

equality holds iff $G = Z_3 \oplus Z_{3n}$.

PROPOSITION 4:

- (1) Suppose $G = Z_{2^{\alpha}} \oplus Z_{2^{\beta}} \oplus Z_{2^{\gamma}} \oplus Z_{2^{\delta}} \oplus H$, $\alpha, \beta, \gamma, \delta \geq 1$. Then $\text{ZS}(G)$ < $rac{21}{16}|G| < \frac{4|G|}{3} + 1.$
- (2) *Suppose* $G = Z_{2^\alpha} \oplus Z_{2^\beta} \oplus Z_{2^\gamma} \oplus H$, $\alpha \geq 1$, $\beta, \gamma \geq 2$. *Then* $\text{ZS}(G) < \frac{40}{32}|G| <$ $\frac{4|G|}{2} + 1$.
- (3) Suppose $G = Z_2 \oplus Z_2 \oplus Z_{2^{\alpha}} \oplus H$ where H is non-cyclic. Then $\text{ZS}(G)$ < $\frac{4|G|}{2}+1$.
- (4) Suppose $G = Z_{2^{\alpha}} \oplus Z_{2^{\beta}} \oplus H$, $\beta \ge \alpha \ge 3$. Then $\text{ZS}(G) < \frac{19}{64}|G| < \frac{4|G|}{3} + 1$.

Proof: Cases (1), (2) and (4) follow directly from Proposition 1. For case (3) we infer that since H is not cyclic, H must contain either a 2-subgroup and we are done by Proposition 4 (1), or a non-cyclic 3-subgroup and we are done by Theorem 6, or a non-cyclic p-subgroup for some $p \geq 5$ and we are done by Theorem 5.

PROPOSITION 5: Suppose $G = Z_4 \oplus Z_{2^{\alpha}} \oplus H$, $\alpha \geq 2$. Then $\text{ZS}(G) < \frac{4|G|}{3} + 1$.

Proof: If H is cyclic of odd order then $G = Z_4 \oplus Z_{4n}$, $n = |H| \cdot 2^{\alpha-2}$ and, again by Theorem 4, $\text{ZS}(G) < \frac{4|G|}{3} + 1$.

If H contains a 2-subgroup, then we are done by Proposition 4 (2) since then $\text{ZS}(G) < \frac{40}{32}|G|$. Lastly, if H is non-cyclic then it contains a non-cyclic p-subgroup. If $p = 2$ we are done by Proposition 4. If $p = 3$ we are done by Theorem 6, and if $p \geq 5$ we are done by Theorem 5.

So there remain to consider only the following three cases:

- (1) $G = Z_2 \oplus Z_2 \oplus H$.
- (2) $G = Z_2 \oplus Z_2 \oplus Z_{2^{\alpha}} \oplus H$, H is cyclic.
- (3) $G = Z_2 \oplus Z_4 \oplus H$.

However, all these cases reduced to either $Z_2 \oplus Z_{2n}$, which is solved in Theorem 4, or to $Z_2 \oplus Z_2 \oplus Z_2 \oplus H$, where H is cyclic of odd order.

Indeed if $G = Z_2 \oplus Z_2 \oplus H$ and H is cyclic of order n, then either $G = Z_2 \oplus Z_{2n}$ if *n* is odd or $G = Z_2 \oplus Z_2 \oplus Z_{2^{\alpha}} \oplus H'$ where H' is cyclic of odd order. If H is not cyclic, then H contains an abelian non-cyclic p-subgroup and we are done by Proposition 4, Theorem 5, and Theorem 6.

If $G = Z_2 \oplus Z_4 \oplus H$ and H is cyclic of order n, then either $G = Z_2 \oplus Z_{2m}$, $m = 2n$ if n is odd, or $G = Z_2 \oplus Z_4 \oplus Z_{2^{\alpha}} \oplus H'$ where H is cyclic of odd order and in fact $\alpha = 1$ by Proposition 4. If H is not cyclic, then as before we are done by either Proposition 4, Theorem 5 or Theorem 6. So we are left with $G = Z_2 \oplus Z_2 \oplus Z_{2^{\infty}} \oplus H$ where H is cyclic of odd order, by Proposition 4.

Our last result which completes the proof of Theorem 1 is:

PROPOSITION 6: *Suppose* $G = Z_2 \oplus Z_2 \oplus Z_{2n}$, then $\text{ZS}(G) < \frac{4|G|}{3} + 1$.

Proof: We shall modify the proof of Theorem 4, to show first that $\frac{5|G|}{4} + 3$ is an upper bound.

Let $A = \{a_1, \ldots, a_{10n+3}\}$ be a sequence of elements in G. Consider first the elements over $Z_2 \oplus Z_2 \oplus Z_2 = H$. Every 9 elements of H contains two equal elements whose sum is 0. Also, by a routine application of the Baker-Schmidt theorem every 5 members contains either 2 of 4 elements whose sum is 0 in H . Hence in $10n + 3$ members we have either $5n - 1$ pairs, $A_1, \ldots, A_{5n-1}, |A_i| = 2$, whose sum is 0 in H, or $5n-2$ such pairs and a quadruple B, $|B|=4$ whose sum is 0 in H , and we can apply the technique of the proof of Theorem 4 to obtain the desired result, namely that $\text{ZS}(G) \leq \frac{3|G|}{4} + 3$.

Observe now that $\frac{5|G|}{4}+3 < \frac{4|G|}{3}+1$ holds for $|G| > 24$, hence for $n > 3$. Since $\text{ZS}(Z_2 \oplus Z_2 \oplus Z_2) = 11 < \frac{4 \cdot 8}{3} + 1$ and $\text{ZS}(Z_2 \oplus Z_2 \oplus Z_4) = 21 < \frac{4 \cdot 16}{3} + 1$, we are left only with $G = Z_2 \oplus Z_2 \oplus Z_6$, for which we have to show $\text{ZS}(G) \leq 32$. Here is the ad-hoc computation. Let $A = \{a_1, \ldots, a_{32}\}$ be a sequence of elements in $G = Z_2 \oplus Z_2 \oplus Z_2 \oplus Z_3$. By the arguments above one of the following cases Occurs.

CASE 1: There are 14 $(5n - 1)$ pairs whose sum is 0 in $Z_2 \oplus Z_2 \oplus Z_2$ and we can apply the techniques of Theorem 4.

CASE 2: There are 13 $(5n-2)$ pairs whose sum is 0 in $Z_2 \oplus Z_2 \oplus Z_2$ and a quadruple whose sum is 0 in $Z_2 \oplus Z_2 \oplus Z_2$ and again we can apply the techniques of Theorem 4.

CASE 3: There are 12 $(5n-3)$ pairs whose sum is 0 and we are left with 8 elements, no two of them equal over $Z_2 \oplus Z_2 \oplus Z_2$ (otherwise we are in case 1 or 2). However, in this case the 8 elements form the whole group $Z_2 \oplus Z_2 \oplus Z_2$ and we can write them as follows:

$$
g_1 = (0, 0, 0, b_1),
$$
 $g_2 = (0, 0, 1, b_2),$ $g_3 = (0, 1, 0, b_3),$ $g_4 = (1, 0, 0, b_4),$
 $g_5 = (0, 1, 1, b_5),$ $g_6 = (1, 0, 1, b_6),$ $g_7 = (1, 1, 0, b_7),$ $g_8 = (1, 1, 1, b_8),$

where b_i is the Z_3 -component. By Theorem A we can choose 9 of the 12 pairs so that their sum is 0 in $Z_2 \oplus Z_2 \oplus Z_3$. This forms a subsequence of 18 elements whose sum is 0 in G. We are left with three pairs A_1 , A_2 , A_3 , $|A_i| = 2$, $i = 1, 2, 3$ whose sum is 0 in $Z_2 \oplus Z_2 \oplus Z_2$ (each) and denote by C_1 , C_2 , C_3 respectively their sum in the fourth coordinate (the Z_3 -coordinate).

If $C_1 = C_2 = C_3$ or $C_1 \neq C_2 \neq C_3 \neq C_1$ then we may add A_1 , A_2 , A_3 to the former 18 elements to get 24 elements whose sum is 0 in G . Hence without loss of generality $C_1 \neq C_2 = C_3$. Now observe that $\{g_1, g_2, \ldots, g_8\}$ contains many subsequences of 4 elements whose sum is 0 in $Z_2 \oplus Z_2 \oplus Z_2$ and if there exists two such quadruples, say B_1, B_2 , with distinct sum (mod 3) in the last coordinate, then there must exist $1 \leq i \leq 3$, $i \leq j \leq 2$ such that $A_i \cup B_j$ is a 6-tuple with zero-sum in G which we can add to the former 18 elements and we are done. So consider: $B_1 = \{g_4, g_3, g_7, g_1\}, B_2 = \{g_4, g_2, g_6, g_1\}, B_3 = \{g_4, g_8, g_5, g_1\}.$ These are quadruples whose sum is 0 in $Z_2 \oplus Z_2 \oplus Z_2$ and hence their sum in the Z_3 coordinate must be equal. But this sum is $b_4 + b_3 + b_7 + b_1 \equiv b_4 + b_2 + b_6 + b_1 \equiv$ $b_4 + b_8 + b_5 + b_1 \equiv j \pmod{3}$. Hence summing over all of them we get:

$$
3b_4 + 3b_1 + b_2 + b_3 + b_4 + b_5 + b_6 + b_7 \equiv 0 \pmod{3}
$$

hence

$$
b_2 + b_3 + b_4 + b_5 + b_6 + b_7 \equiv 0 \pmod{3},
$$

but also it is easy to check now that:

$$
g_2 + g_3 + g_4 + g_5 + g_6 + g_7 = 0 \text{ in } Z_2 \oplus Z_2 \oplus Z_2 \oplus Z_3
$$

and again we can add these elements to the former 18 elements to obtain 24 members of A whose sum is 0 in $Z_2 \oplus Z_2 \oplus Z_6$.

This completes the proof of Proposition 6 and the main theorem of this paper.

|

ACKNOWLEDGEMENT: I am indebted to Professor Dani Berend for his help in preparing this paper, and for the referee for many useful comments.

References

- [1] N. Alon, A. Bialostocki and Y. Caro, *Extremal zero-sum problems,* manuscript.
- [2] N. Alon and Y. Caro, *On* three *zero-sum Ramsey-type problems,* Journal of Graph Theory 17 (1993), 177-192.
- [3] N. Alon and M. Dubiner, *Zero-sum sets of prescribed size,* Combinatorics, *Paul Erd6s is eighty* (Vol. 1), Keszthely (Hungary), 1993, pp. 33-50.
- [4] N. Alon, D. Kleitman, R. Lipton, R. Meshulam, M. Rabin and J. Spencer, Set *systems with no union of cardinality 0 (mod m), Graphs and Combinatorics 7* (1991), 97-99.
- [5] R.C. Baker and W. Schmidt, *Diophantine problems in variables restricted to the values 0 and* 1, Journal of Number Theory 12 (1980), 460-486.
- [6] A. Bialostocki, Y. Caro and Y. Roditty, *On zero-sum* Turan *numbers,* Ars Combinatoria 29A (1990), 117-127.
- [7] A. Bialostocki and P. Dierker, *On the Erd6s-Ginzburg-Ziv theorem and the* Ramsey *numbers for* stars *and matchings,* Discrete Mathematics 110 (1992), 1-8.
- [8] A. Bialostocki and P. Dierker, *Zero-sum Ramsey theorems,* Congressus Numerantium 70 (1990), 119-130.
- [9] A. Bialostocki and P. Dierker, *Zero-sum* Ramsey *numbers -- small graphs,* Ars Combinatoria 29A (1990), 193-198.
- [10] A. Bialostocki and P. Dierker, *On* zero-sum *Ramsey numbers -- multiple copies* of a graph, manuscript submitted.
- [11] Y. Caro, *On zero-sum Ramsey numbers* -- stars, Discrete Mathematics 104 (1992), 1-6.
- [12] Y. Caro, *On q-divisible hypergraphs,* Ars Combinatoria 33 (1992), 321-328.
- [13] Y. Caro, *On several variations of the Turan and Ramsey numbers, Journal of* Graph Theory 16 (1992), 257-266.
- [14] Y. Caro, *On zero-sum Turan numbers* -- *stars and cycles*, Ars Combinatoria 33 (1992), 193-198.
- [15] Y. Caro, *On* zero-sum *delta* systems *and multiple copies of bypergraphs,* Journal of Graph Theory 15 (1991), 511-521.
- [16] Y. Caro, *On Zero-sum Ramsey numbers* -- *complete graphs*, Quarterly Journal of Mathematics, Oxford 43 (1992), 175-181.
- [17] Y. Caro, *Zero-sum problems* -- A survey, Discrete Mathematics, to appear.
- [18] Y. Caro, *A complete characterization of the Zero-Sum (mod 2) Ramsey Numbers,* Journal of Combinatorial Theory, Series A, to appear.
- [19] Y. Caro and Y. Roditty, *On* zero-sum Turan numbers *problems of Bialostocki and Dierker,* Journal of the Australian Mathematical Society, Series A 53 (1992), 402-407.
- [20] F.R.K. Chung and R.L. Graham, *Edge-colored complete* graphs *with precisely colored subgraphs,* Combinatorica 3 (1983), 315-324.
- [21] P. Erd6s, A. Ginzburg and A. Ziv, *Theorem in additive number theory,* Bulletin of the Research Council of Israel 10F (1961), 41-43.
- [22] C. Flores and O. Ordaz, *On sequences with zero-sum in abelian groups,* submitted.
- [23] Z. Füredi and D.J. Kleitman, *On zero-trees*, Journal of Graph Theory 16 (1992), 107-120.
- [24] Y.O. Hamidounre, *On* the *subset product in finite groups,* Europe Journal of Combinatorics 12 (1991), 211-221.
- [25] R. Meshulam, *An uncertainty inequality and zero subsums,* Discrete Mathematics 84 (1990), 197-200.
- [26] J.E. Olson, *A combinatorial problem on finite abelian groups (I, II)*, Journal of Number Theory 1 (1969), 8-10, 195-199.
- [27] Y. Roditty, *On zero-sum Ramsey-numbers of multiple copies* of a graph, Ars Combinatoria, to appear
- [28] L. Schrijver and P.D. Seymour, *A simpler proof of the zero-trees theorem,* Journal of Combinatorial Theory, Series A 58 (1991), 301-305.
- [29] L. Schrijver and P.D. Seymour, *Spanning* trees *of different weights,* in *Polyhedral Combinatorics,* DIMACS series in Discrete Mathematics and Theoretical Computational Science, Vol. 1, AMS-ACM, 1990, pp. 281-288.
- [30] A. Geroldinger, On *Davenport's constant,* Journal of Combinatorial Theory, Series A, in press.