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ABSTRACT 

Let G be a finite abelian group, G ~ {Z,~, Z2 ~ Z2n}. Then every sequence 

A = { g l , . . . ,  gt } of t = ~ 4- 1 elements from G contains a subsequence 

B C A, ]B[ = [G[ such that  ~"]~,eBgl = 0 (in G). This bound, which 

is best possible, extends recent results of [1] and [22] concerning the cele- 

brated theorem of Erdbs-Ginzburg-Ziv [21]. 

I.  I n t r o d u c t i o n  

Thirty years ago, Erdbs, Ginzburg and Ziv proved the following celebrated the- 

orem. 

THEOREM A ([21]): Let m > k > 2 be positive integers such that klm , and 

let A = {at, a2 , . . . , am+k-1} be a sequence of integers. Then there exists I c 

{ 1 , 2 , . . . , m  + k -  1}, ]I1 = m, such that ~-]~ielai - 0 (mod k). 

This theorem is the starting point of many new results in the evolving area 

called Zero-sum theory. We refer the reader to the references. 

Recently efforts have been made to make precise the Erdbs-Ginzburg-Ziv the- 

orem culminating in the following results of Alon-Bialostocki-Caro and Flores- 

Ordaz. 

THEOREM B ([1], [22]): Let A = { a l , . . . ,  am+k-2} be a sequence of integers that 

violates the conclusion of Theorem A. Then there are two elements a, b E Zk (the 

cyclic group rood k) such that 

(1) gcd(a - b, k) = 1 (namely a - b is a generator of Zk), 
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(2) A = A1 U A2, [ A I [ -  JA2J -- - 1  (rood k) and 

ai E A1 implies ai -- a (rood k), while ai E A2 implies ai - b (rood k). 

THEOREM C ([1], [22D: Let G be an abel/an non-cyclic group of order n, him, 

and let A = { g b . . . ,  gn+m-2} be a sequence of n + m -  2 elements from G. Then 

there exists S C A, [S[ = m such that ~-~9,es g~ = 0 (in G). 

A stronger result proved in [1] is: 

THEOREM D ([1]): Let G be a finite abel/an non-cyclic group of order n, and let 

A = {gl , - . - ,gt} ,  t = 3n/2, be a sequence of elements from G. Then 

(1) There exists B c A, [B[ = n such t h a t  EgieB gi = 0 (in G). 

(2) The bound t = 3n/2 is best possible and is realized only by groups of  the 

form G = Z2 �9 Z2m. 

Our main result is the following: 

THEOREM 1: Let G be a finite abel~an group, G ~ {Z,~, Z2 �9 Z2n} and let 

A = {gl , . . .  ,gt}, t = 4[G[/3 + 1, be a sequence of elements from G. Then 

(1) There exists B C A, [B[ = [G[, such that ~-~eB gi = 0 (in G). 

(2) The bound t = 4[G[/3 + 1 is best possible and is realized only by groups of  

the form G = Z3 �9 Za,~. 

We assume from now on that H is a finite abelian group. The Davenport's 

constant of G, denoted by D(G), is the smallest integer t such that every sequence 

of t members of G contains a subsequence whose members sum to 0 (in G). The 

zero-sum constant of G, denoted by ZS(G), is the smallest integer t such that  

any sequence of t members of G contains a subsequence of cardinality [G[, that 

sum to 0 (in G). 

Thus ZS(Zn) = 2n - 1 by Theorem A, while it is easy to see that D(Zn) = n. 

2. P r e l i m i n a r y  results 

The proof of Theorem 1 is quite lengthy and requires some preliminary results, 

some of which were already explored in [1]. It becomes clear in the course of the 

proof of Theorem 1 that our proof inevitably contains the proof of Theorem D 

mentioned in the introduction. Due to the length of the whole proof, it is more 

comfortable to split it into several, almost independent sections. 

The following theorem of Olson [26] is an important tool. 
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THEOREM E ([26]): Let G be an abeIian p-group (p prime) of  the form G = 
k o~ Zp~, ~ . . .  ~ Z p ~ .  Then D(G) = 1 + ~ i = l ( P  ' - 1). 

Using Olson's theorem we can compute the zero-sum constant for abelian 

p-groups. 

THEOREM 2: Let G be an 8belian p-group of  the form G = Zp~l ~ "-. @ Zp~k. 

Then 

k 

ZS(G) = 1 + E ( p  ~ i -  1 ) +  (p~-~ l  ~ -  1) = [G[ + D ( G ) -  1. 
i = l  

Proof: Let H = G ~ Zicl, then H is also a p-group and, by Olson's theorem, 

k 

D ( H )  E(pO,_ 1) + - ( p ~ = 1  ~ - 1 )  - = IG[ + D ( G ) -  + 1. 
i----1 

Now let A = { g l , . . . ,  gt} be a sequence of t = D ( H )  elements from G. Consider 

the related sequence B -- { h i , . . . , h t } ,  t = D(H)  where hi = (g~,l) E H.  

Then by the definition of D(H)  there exists a subsequence of B that  sums to 

0 in H. But D(H)  = ]G] + D(G) - 1 < 2[G[, hence the second coordinate of 

the hi 's  (1 in Zlal) forces that  the number of summands is exactly [GI, thus 

ZS(G) _< D(H)  = [G] + D(G) - 1. On the other hand, let e~ E G be the vector 

(element of G) with k coordinates, whose i-th coordinate is 1 and otherwise is 0. 

Consider the following sequence A of members of G: 

Take (p~ - 1) copies of e~ for i = 1 , . . . ,  k, and [G[ - 1 copies of the zero-vector 

0 = (0, 0 , . . . ,  0). Clearly [A[ = [G I + D(G) - 2 but A contains no subsequence of 

]G[ members that  sums to 0. Thus ZS(G) = [G] + D(G) - 1. | 

Theorem 2 suggests the following conjecture: 

CONJECTURE 0: Let G be a finite abelian group. Then ZS(G) = [G} + D(G) - 1. 

It is easy to see that ZS(G) > [G[ + D(G) - 1 always holds. 

Another useful result is: 

THEOREM 3: Let G be an abelian group written as G = A ~ H,  then ZS(G) _< 

(ZS(A) - 1)[HI + ZS(H).  

Proof: This bound allows us to choose ZS(A) blocks, each of [H[ elements, in 

each of which the sum of the second coordinate (H)  is 0 in H.  Hence we must 
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have (by the definition of ZS(A)) exactly [A I blocks of IH[ elements whose sum 

in the first coordinate is also 0 in A, hence 0 in G. | 

An interesting conjecture (see [3])is: 

CONJECTURE 1: Let A = { a l , . . . ,  a4n-3} be a sequence of elements in Z,~ �9 Zn. 

Then there exists I C { 1 , . . . , 4 n -  3}, [II = n such that Y':~ie~ ai = 0 in Z~ @Zn. 

The bound 4n - 3 is known to hold for 2 < n < 6 (by messy calculations) and 

in [3] an upper bound 6n - 7 is proved for all n and 5n - 2 is an upper bound 

for n sufficiently large. We shall use only the 4n - 3 bound for 2 < n < 5. 

The last tool we need is the Baker-Schmidt theorem [5]. 

THEOREM F ([5]): Let q be a prime power and let hi(X) = h i ( x l , . . . , x t )  �9 

Z[X l , . . . ,  xt], i = 1 , . . . ,  n be a family of polynomials satisfying: 

hl(O) - . . .  =- hn(O) = O (mod q), anda l so  t >  (~-~ deg h i ( x ) )  

Then there exists an 0 r a �9 {0, 1} t such that h i (a )  --- . . .  -- hn(a) - 0 (mod q). 

3. S o m e  e x a c t  c o m p u t a t i o n  o f  ZS(G) 

Our main result in this section is: 

THEOREM 4: 

(1) ZS(Z2 @ Z2m) = 6m, 

(2) ZS(Z3 @ Z3m) = 12m + 1, 

(3) ZS(Z4 ~ Z4m) = 20m + 2, 

(4) ZS(Z5 @ Zsm) = 30m + 3. 

Proof  Since ZS(Z2 @ Z2m) = 6m is proved in [1] and is slightly simpler than the 

other cases we shall prove the case ZS(Z3 ~ Z3m) = 12m + 1. So let el = (1, 0), 

e2 = (0, 1), e3 = (1, 1) be members of Z3 @ Z3m. 

Take 3m - 1 copies of el,  9m - 1 copies of e2 and two of e3 to get a sequence 

of 12m elements in Z3 �9 Z3m without a zero-sum subsequence of cardinality 9m. 

Hence ZS(Z3 ~ Z3m) >_ 12m + 1. In fact the lower bound in all the cases cited in 

Theorem 4 follows directly from ZS(G) _> [G[ + D(G) - 1. 

To show the converse inequality, which is much harder, let 

A = {gl , . - . ,  g12m+l} 
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be a sequence of elements in Z3 @ Z3m. 

We need the following facts. 

FACT 1: Let al  . . . .  ,a9 be 9 elements in Z3 ~ Z3. There exist three of them 

whose sum is 0 in Z3 ~ Z3. 

This is a special case of Conjecture 1 that  any sequence of 4n - 3 elements in 

Zn @ Zn contains a zero-sum subsequence of cardinality n. 

This has been checked for 2 < n < 6 and is easy for n = 3. 

FACT 2: Let a 1 , . . . ,  a7 be 7 elements in Z3 �9 Z3. There exist either three or 

six of them whose sum in 0 in Z3 @ Z3. 

This follows from Theorem F [5] in the following way: 

Write ai = (bi, ci), bl, c~ E Z3. Consider the following polynomial equations. 

7 
f (x) = - o ( m o d  3),  

i = 1  

7 

f2 (X)  = Z cixi = 0 (mod 3), 
i = 1  

7 

f3(X)  = Z x, -= 0 (mod 3). 
i = 1  

(y]3 degf i (x))  ( 3 - 1 )  = 6 a n d x i  = 0, i = 1, 7 i s a s o l u t i o n ,  Since 7 > ~=1 - . . ,  

then by the Baker-Schmidt theorem there is another solution with xi E (0, 1), 

i = 1 , . . . ,  7. But f3(x) implies that  we have chosen either 3 or 6 members. 

Let us return to the proof. 

Consider the members of A over Z3 @ Z3 first. By the last two observations 

and since IAI = 12m + 1 we must have either 4m - 1 triples, say A 1 , . . . ,  Aura-l, 

IA{I = 3, such that  each triple sums to 0 in Z3 @ Z3, or 4m - 2 such triples, 

say A1 , . . . ,  A4m-2, IAi] = 3, and a 6-tuple B such that  they sum each to 0 in 

Z3 $ Z3. 

We now concentrate on the sums of the second coordinates in the A~'s and B. 

For each 1 < i < 4m - 2 write 

1 h d~ = ~{t  e sum of the second coordinates of the members of Ai} 

and d4m-1 is this sum for A, ,~- I  respectively B. 



226 Y. CARO Isr. J. Math. 

CASE 1: Suppose we have 4m - 1 zero-sum triples and consider 

D = {dl, d2 , . . . ,  d4,n-1}. 

By the ErdSs-Ginzburg-Ziv theorem there exists I C {1 , . . . ,  4 m -  1}, III = 3m, 

such that ~ e l d i  - 0 (mod m). Hence ~'~a~eA, gJ = 0 in Z3 �9 Z3m forming a 

zero-sum subsequence of cardinality I .  IAil = 9m as needed. 

CASE 2: Suppose we have 4 m - 2  zero-sum triples and the 6-tuples B., Consider 

D = { d l , . . . ,  d4m-2} and d4m-1. By Theorem B we may repeat the argument 

of case 1 unless there exist a, b e Zm gcd(a - b, m) = 1 and either (w.l.o.g.) 

dl . . . . .  d3m-1 = a (in Zm); d3m . . . . .  d4m-2 = b (in Zm) or dl . . . . .  

d2m-1 = a (in Zm) and d2m . . . . .  d4m-2 = b (in Zm). 

Suppose d4m-1 - j (mod m). We have to find 3m - 2 of the di's whose sum 

with d4m-1 - 0 (mod m). So we have either 

(I) j + b x + ( 3 m - 2 - x ) a - O ( m o d m ) ,  0 < x < m - 1 ,  or 

(II) j + b x + ( 3 m - 2 - x ) a - O ( m o d m ) ,  m - l < x < 2 m - 1 .  

But this implies x ( b - a )  = 2 a - j  (in Zm) and because g c d ( a - b , m )  = 1, b - a  

is a unit in Zm so x = ( 2 a - j ) ( b - a )  -1 E Zm is a solution. Hence in case (I) just 

take x = ( 2 a - j ) ( b -  a) -1 and in case (II) take x0 = x + m  �9 [ m -  1 , . . . ,  2 m -  1]. 

Hence ZS(Z3 @ Z3m) = 12m + 1. 

The proof of the two other cases is exactly the same. | 

Theorem 4 suggest the following conjecture: 

CONJECTURE 2: 

ZS(Z,~ @ Z,~m) = n (n  + 1)m + n - 2. 

The only obstacles are that  we depend in the former proof on the 4n - 3 bound 

for the Z,~ @ Z ,  conjecture and that the Baker-Schmidt holds only for prime 

power. Anyway, this conjecture holds true for n = 2 ~, 3 ~, 5 ~ because in these 

cases the Baker-Schmidt theorem applies and the 4 n - 3  bound for Z ,  ~ Z,~ is true 

by a multiplicative argument presented in [3]. It is also known that  Conjecture 0 

implies Conjecture 2 in view of a theorem of Olson [26] concerning D ( Z n  @ Znm).  

An important remark, after Theorem 4, that will be useful later is: 

Remark:  Suppose G = Z3 �9 Za,~ @ H,  where IHI = m and gcd(n, m) > 1. Then 

ZS(G) < 12nm < ~ + 1. | 
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Indeed we may repeat the proof of Theorem 4, step by step, ensuring 4nm - 2 

triples, A1, . . . ,A4nm-2,  [A~I = 3, such that each triple sums to 0 in Z3 @ Z3. 

Defining the d~'s as before, and since we are left with Z,~ ~ H which is not cyclic 

as gcd(n, m) > 1, and also IZ~ �9 HI = nm, we can apply (after Theorem C), 

Case 1 in the proof of Theorem 4 to ensure I C {1 . . . . .  4nm - 2}, III = 3nm, 

~-~iel di = 0 in Z,~ @ H. Hence 

Z g j = 0  i n Z 3 ~ Z 3 n @ H .  
gjEAi 

iEI 

4. The  presence of  abel ian non-cycl ic  p-subgroups,  p > 5 

Our main goal in this section is to show that the presence of an abelian non-cyclic 

p-subgroup, p ~ 5, implies the inequality ZS(G) < ~ + 1. This goal is achieved 

through a sequence of computational propositions. 

k PROPOSITION 1: Let G = (~i=x Zpe, @ H where ei >_ ti. Then 

ptl  - k +  1 

ZS(G) _< 1 + p-t~+t~-+..--.+-~s lal - 1. 

Proof." Set G = A ~ II, then by Theorem 3, ZS(G) _< (ZS(A) - I)IHI + ZS(H). 
Rearranging and using ZS(H) _< 21H I - 1 we obtain ZS(G) < (ZS(A) + 1)[H I - 1. 

Set S = i~ik=l Zp.~ and apply Theorem 2 to get 

(ZS(A) + 1)IHI- 1 -- (IAI + D ( A ) ) I H [ -  1 = 1 + - - ~ - ]  IGI -  1. 

Applying monotonicity we are done. | 

PROPOSITION 2: 

(1) Suppose G = Zp~ ~ Zp~ ~ H for some p > 7, a,/3 > 1. Then ZS(G) < 

~lal < ~ + 1. 
134 r < 41G[ _[_ 1. (2) Suppose G = Z5~ @ Zs~ ~ H, a, ~ >_ 2. Then ZS(G) < 125 ~ 3 

(3) Suppose G = Z5 ~ Zsm @ H, m >_ 2. Then ZS(G) < ~ + 1. 

(4) Suppose G = Z5 G Z5 @ H. Then ZS(G) < 4-I-q! + 1. 3 

Proof." Cases (1) and (2) follow directly from Proposition 1. 

Case (3) follows from Theorem 4 if H is trivial, and otherwise from Theorem 

4 and Proposition 1 since m > 2. 
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Case (4) follows from the observation that  if H contains Zpo, p # 5, then 

G -- Zs (9 Zsp- (9 H ~ and this case is solved in (3). Otherwise 

G = Z5 (9 Z5 (9 Z5~ (9 H ~ 

and we are done by Proposition 1. | 

The next theorem summarizes the content of Section 4. 

THEOREM 5: Suppose G contains an abelian non-cyclic p-group/'or some p > 5. 

Then ZS(G) < 4-~3~ + 1. 

Proof'. It follows from Propositions 1 and 2 and Theorem 4. | 

5. T h e  p r e s e n c e  o f  a b e l i a n  n o n - c y c l i c  p - s u b g r o u p s ,  p = 2, 3 

We now consider the presence of an abelian non-cyclic p-subgroup where p = 2, 3. 

PROPOSITION 3: 
34 (1) Suppose G = Z3, @ Z3~ (9 Z3~ (9 H, a,]~,~/ >_ 1. Then ZS(G) < ~T[G[ < 

41GI 
3 + 1 .  

(2) Suppose G = Z3. (9 Z3~ (9 H, 13 > a > 2. Then ZS(G) < ~[G[ < ~ + 1. 

Proo~ Both cases follow directly from Proposition 1. | 

Now we are left with the case G = Z3 (B Z3~ (9 H, where H contains no 3- 

subgroup. If H is cyclic, say H = Z,~, then G = Z3 (9 Z3m, m = 3'~-1n, and we 

proved in Theorem 4 that  ZS(Z3 (9 Z3m) = 4-~3G + 1. If H is not cyclic we can 

write H = Z,~ (9 H ~, hence G = Z3 (9 Z3m (9 H' ,  m = 3~-1n and, by the remark 

after Theorem 4, ZS(G) < 4-~3G + 1, hence we have proved: 

THEOREM 6: Suppose G contains an abelian non-cyclic 3-subgroup. Then 

ZS(G) < ~qJ + 1; 

equality holds iff G = Z3 (9 Z3~. 

PROPOSITION 4: 

(1) Suppose G = Z2o (9 Z2~ (9 Z2~ (9 Z2~ (9 H, a,/3, % 5 >_ 1. Then ZS(G) < 

~IGI < ~ + 1. 
40 

(2) SupposeG = Z2,@Z2o(gZ2,(gH, a >_ 1, 8,7  >- 2. Then ZS(G) < ~IGI < 
41GI z +1. 
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(3) Suppose 
41al 

3 + 1 .  

(4) Suppose 
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G = Z2 @ Z2 ~ Z2~ @ H where H is non-cyclic. Then ZS(G) < 

G = Z2o $ Z2~ @ H, ~ > a > 3. Then ZS(G) < 79GI 64 < 4-3~3G + I" 

Proof: Cases (1), (2) and (4) follow directly from Proposition 1. For case (3) 

we infer that  since H is not cyclic, H must contain either a 2-subgroup and 

we are done by Proposition 4 (1), or a non-cyclic 3-subgroup and we are done 

by Theorem 6, or a non-cyclic p-subgroup for some p > 5 and we are done by 

Theorem 5. 

PROPOSITION 5: Suppose G = Z4 @ Z2o �9 H, a >_ 2. Then ZS(G) < 4Afi3a + 1. 

Proof  If H is cyclic of odd order then G = Z4 r Zan, n = IHI. 2 ~-2 and, again 

by Theorem 4, ZS(G) < 4-~3a + 1. 

If H contains a 2-subgroup, then we are done by Proposition 4 (2) since then 
40 ZS(G) < ~ [G[. Lastly, if H is non-cyclic then it contains a non-cyclic p-subgroup. 

If p = 2 we are done by Proposition 4. If p = 3 we are done by Theorem 6, and 

if p > 5 we are done by Theorem 5. | 

So there remain to consider only the following three cases: 

(1) G = Z 2 ~ Z 2 @ H .  

(2) G = Z2 �9 Z2 @ Z2o �9 H, H is cyclic. 

(3) G = Z2 ~ Z4 @ H. 

However, all these cases reduced to either Z2 @Z2n, which is solved in Theorem 

4, or to Z2 �9 Z2 �9 Z2 @ H, where H is cyclic of odd order. 

Indeed if G = Z2 �9 Z2 �9 H and H is cyclic of order n, then either G = Z2 ~ Z2,~ 

if n is odd or G = Z2 $ Z2 �9 Z2~ $ H '  where H '  is cyclic of odd order. If H is 

not cyclic, then H contains an abelian non-cyclic p-subgroup and we are done by 

Proposition 4, Theorem 5, and Theorem 6. 

If G = Z2 ~ Z4 ~ H and H is cyclic of order n, then either G = Z2 @ Z2m, 

m = 2n if n is odd, or G = Z2 �9 Z4 @ Z2~ $ H '  where H is cyclic of odd order 

and in fact a = 1 by Proposition 4. If H is not cyclic, then as before we are 

done by either Proposition 4, Theorem 5 or Theorem 6. So we are left with 

G = Z2 $ Z2 �9 Z2o �9 H where H is cyclic of odd order, by Proposition 4. 

Our last result which completes the proof of Theorem 1 is: 

PROPOSITION 6: Suppose G = Z2 $ Z2 @ Z2n, then ZS(G) < 4-~3a + 1. 
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Proos We shall modify the proof of Theorem 4, to show first that ~ § 3 is 

an upper bound. 

Let A = ( a l , . . . , a lon+3}  be a sequence of elements in G. Consider first the 

elements over Z2 (9 Z2 (9 Z2 = H. Every 9 elements of H contains two equal 

elements whose sum is 0. Also, by a routine application of the Baker-Schmidt 

theorem every 5 members contains either 2 of 4 elements whose sum is 0 in H. 

Hence in 10n § 3 members we have either 5n - 1 pairs, A1 , . . . ,  Ash-l ,  IA~I = 2, 

whose sum is 0 in H,  or 5n - 2 such pairs and a quadruple B, IBI = 4 whose sum 

is 0 in H, and we can apply the technique of the proof of Theorem 4 to obtain 

the desired result, namely that ZS(G) < 5-l-q-I + 3. 
- -  4 

Observe now that ~ § 3 < ~ § 1 holds for IGI > 24, hence for n > 3. 

Since ZS(Z2 (9 Z2 (9 Z2) = 11 < ~-~ + 1 and ZS(Z2 (9 Z2 (9 Z4) = 21 < ~ + 1, 

we are left only with G = Z2 (9 Z2 (9 Z6, for which we have to show ZS(G) _< 32. 

Here is the ad-hoc computation. Let A = ( a l , . . . ,  a32} be a sequence of elements 

in G = Z2 (9 Z2 (9 Z2 (9 Z3. By the arguments above one of the following cases 

Occurs. 

CASE 1: There are 14 (5n - 1) pairs whose sum is 0 in Z2 (~ Z2 (9 Z2 and we 

can apply the techniques of Theorem 4. 

CASE 2: There are 13 (5n - 2) pairs whose sum is 0 in Z2 (9 Z2 @ Z2 and a 

quadruple whose sum is 0 in Z2 $ Z2 (9 Z2 and again we can apply the techniques 

of Theorem 4. 

CASE 3: There are 12 (5n - 3) pairs whose sum is 0 and we are left with 8 

elements, no two of them equal over Z2 (9 Z2 @ Z2 (otherwise we are in case 1 or 

2). However, in this case the 8 elements form the whole group Z2 (9 Z2 $ Z2 and 

we can write them as follows: 

gl = (0,0,0, bl), 

g5 = (0, 1, 1, bs), 

g2 = (0, 0, 1, b2), 

g6 = (1, 0, 1, bs), 

g3 = (0, 1, 0, bs), 

g7 = (1, 1,0, bT), 

g4 = (1,0,0, b4), 

g8 = (1, 1, 1, bs), 

where b~ is the Z3-component. By Theorem A we can choose 9 of the 12 pairs so 

that  their sum is 0 in Z2 (9 Z2 @ Z2 (9 Z3. This forms a subsequence of 18 elements 

whose sum is 0 in G. We are left with three pairs A1, A2, As, IA~] = 2, i = 1,2, 3 

whose sum is 0 in Z2 (9 Z2 (9 Z2 (each) and denote by C1, C2, Ca respectively 

their sum in the fourth coordinate (the Z3-coordinate). 



Vol. 92, 1995 ZERO-SUM SUBSEQUENCES 231 

If C1 = C2 = C3 or C1 ~t C2 ~t C3 ~t C1 then we may add A1, A2, A3 to the 

former 18 elements to get 24 elements whose sum is 0 in G. Hence without loss 

of generality C1 ~t C2 = C3. Now observe that {g l ,g2 , . . . , gs}  contains many 

subsequences of 4 elements whose sum is 0 in Z2 | Z2 ~ Z2 and if there exists two 

such quadruples, say B1, B~, with distinct sum (mod 3) in the last coordinate, 

then there must exist 1 < i < 3, i < j _< 2 such that Ai u Bj is a 6-tuple with 

zero-sum in G which we can add to the former 18 elements and we are done. So 

consider: B1 = {g4, g3, gT, gl}, B2 = {ga, g2, g6, gl }, B3 -- {g4, gs, gs, gl }. These 

are quadruples whose sum is 0 in Z2 ~ Z2 | Z2 and hence their sum in the Z3- 

coordinate must be equal. But this sum is b4 + b3 + b7 + bl - b4 + b2 + b6 q- bl -- 

b4 + bs + b5 + bl - j (mod 3). Hence summing over all of them we get: 

3b4 + 3bl + b2 + b3 + b4 + b5 + b6 + b7 -= 0 (mod 3) 

hence 

b2 + b3 + b4 + b5 + b6 + b7 - 0 

but also it is easy to check now that: 

(mod 3), 

g2 q- g3 -b g4 q- g5 T g6 q- g7 -~ O in Z2 0 Z2 0 Z2 G Z3 

and again we can add these elements to the former 18 elements to obtain 24 

members of A whose sum is 0 in Z2 ~ Z2 @ Z6. 

This completes the proof of Proposition 6 and the main theorem of this paper. 
| 
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